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Motivation

3D structure of proton were studied typically using

semi-inclusive hadron production
[Mulders, Tangerman (1996), Brodsky, Hwang, Schmidt (2002),

Bacchetta et al.(2007)]

jet production/hadron in jet
[Kang, Metz, Qiu, Zhou (2011), Liu, Ringer, Vodelsang, Yuan (2019),

Kang, Lee, Shao, Zhao (2021)]

Jet was thought to be able to probe only a subset of TMD
PDFs (4 out of 8 at leading twist).

This work: Investigate possibility of probing all TMD PDFs
with jet.
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Inclusive jet production in DIS

Consider l + p(P, S)→ l′ + J(PJ) +X

s⊥

PJ

γ*
protonPJ,⊥

l′ 

l

ϕs

ϕJ

This is like SIDIS, but replace a hadron
by a jet.
[Gutierrez-Reyes, Scimemi, Waalewijn,

Zoppi (2018)]

Jets at EIC

A lot of statistics at small pT in the
forward region.

pT

y

Focus on the region
ΛQCD ∼ |PJ⊥| � Q.
This is unlike LHC, for which only
jets with |PJ⊥| � ΛQCD are of
interest.

Still get jets if we use jet algorithms
that involve energy (i.e.
spherically-invariant jet algorithm
[Cacciari, Salam, Soyez (2012)]) instead of
kT . Low pT (∼ ΛQCD) and low Q2

(∼ 10− 100 GeV2) is not a problem. 3/15



Factorization

Factorization from SCET: σ = H ⊗ Φ⊗ J
H: hard function, Φ: TMD PDFs, J : TMD jet functions (JFs)
[Gutierrez-Reyes, Scimemi, Waalewijn, Zoppi (2018)]

Φij(x, pT ) =

∫
dy−d2yT

(2π)3
eip·y〈P |χ̄jn(0)χin(y)|P 〉|y+=0

J ij(z, kT ) =
1

2z

∑
X

∫
dy−d2yT

(2π)3
eik·y〈0|χin̄(y)|JX〉〈JX|χ̄jn̄(0)|0〉|y−=0

TMD PDFs and TMD JFs encoded in azimuthal asymmetries:

dσ

dxdydzdψdφJdP
2
J

=
α2

xyQ2

{(
1− y +

y2

2

)
FUU,T + (1− y) cos(2φJ )F

cos(2φJ )

UU

+ S‖(1− y) sin(2φJ )F
sin(2φJ )

UL
+ S‖λey

(
1−

y

2

)
FLL

+ |S⊥|
[(

1− y +
y2

2

)
sin(φJ − φS)F

sin(φJ−φS)

UT,T
+ (1− y) sin(φJ + φS)F

sin(φJ+φS)

UT

+(1− y) sin(3φJ − φS)F
sin(3φJ−φS)

UT

]
+ |S⊥|λey

(
1−

y

2

)
cos(φJ − φS)F

cos(φJ−φS)

LT

}
F ’s contain convolutions of TMD PDFs and TMD JFs.
F ’s: accessible by traditional jet function
F ’s: inaccessible by traditional jet function
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TMD PDFs at leading twist

Φ =
1

2

{
f1/n− f⊥1T

εαβp
α
TS

β
T

M
/n+

(
SLg1L −

pT · ST
M

g1T

)
γ5/n

+h1T
[ /ST , /n]γ5

2
+

(
SLh

⊥
1L −

pT · ST
M

h⊥1T

)
[ /pT , /n]γ5

2M
+ ih⊥1

[ /pT , /n]

2M

}

hadron
quark

unpolarized chiral transverse

U f1 h⊥1 (Boer-Mulders)

L g1L h⊥1L
T f⊥1T (Sivers) g1T h1T , h

⊥
1T (transversity)

[Angeles-Martinez, Bacchetta, Balitsky, Boer, Boglione, Boussarie, Ceccopieri, Cherednikov, Connor et al.(2015)]

8 TMD PDFs at leading twist, functions of x and p2
T

T-even: f1, g1L, g1T , h1T , h
⊥
1L, h

⊥
1T

T-odd: f⊥1T , h
⊥
1

3 functions f1, g1L, h1T survive after pT integration giving collinear PDF

Accessible by traditional jet function: f1, g1L, g1T , f
⊥
1T
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T-odd jet function

Traditionally, only jets with high pT (� ΛQCD) were of interest.
Production of high-pT jets is perturbative. Since massless perturbative
QCD is chiral-symmetric, only T-even jet functions appear.

At low pT (∼ ΛQCD), the jet is sensitive to nonperturbative physics. In
particular, spontaneous chiral symmetry breaking leads to a nonzero
T-odd jet function when the jet axis is different from the direction of the
fragmenting parton. (This is similar to Collins effect in fragmentation

functions of hadrons [Collins (2002)].)

J (z, kT ) = J1(z, kT )
/̄n

2
+ iJT (z, kT )

/kT /̄n

2

J1: T-even, traditional jet function

JT : T-odd, encodes correlations of quark
transverse spin with quark transverse momentum
(analogue of Collins function)

S
Pin

WTA axis

γ*

recoiled hadrons

proton
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Advantages of T-odd jet function

Universality
Like the T-even J1, T-odd JT is process independent.
Flexibility
Flexibility of choosing jet recombination scheme and hence the jet axis
⇒ Adjust sensitivity to different nonperturbative contributions
⇒ Provide opportunity to “film” the QCD nonperturbative dynamics, if one
continuously change the axis from one to another.
High predictive power

Perturbative predictability. Since a jet contains many hadrons, the jet
function has more perturbatively calculable degrees of freedom than the
fragmentation function. For instance, in the WTA scheme, the
z-dependence in the jet function is completely determined:

J (z, kT , R) = δ(1− z)J̃(kT ) +O
(

k2
T

P 2
JR

2

)
[Gutierrez-Reyes, Scimemi, Waalewijn, Zoppi (2018)]

Nonperturbative predictability. Similar to the study in [Becher, Bell
(2014)], JT can be factorized into a product of a perturbative coefficient
and a nonperturbative factor. The nonperturbative factor has an operator
definition [Vladimirov (2020)], and as a vacuum matrix element can be
calculated on the lattice. This is unlike the TMD fragmentation function,
which is an operator element of |h+X〉.
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Azimuthal asymmetry
sin(φJ + φs) azimuthal asymmetry:

A(ζ, y, φs, φJ , PJ⊥) = 1 + ε|S⊥| sin(φJ + φs)
FUT

FUU

FUT ∼ h1 ⊗ JT , probes transversity
We simulate using Pythia 8.2+StringSpinner [Kerbizi, Loennblad (2021], with jet charge [Kang, Liu,
Mantry, Shao (2020)] measured to enhance flavor separation (not mandatory), with EIC kinematics.
Use the spherically-invariant jet algorithm [Cacciari, Salam, Soyez (2012)]

dij = min(E
−2
i , E

−2
j )

1− cos θij

1− cosR
, diB = E

−2
i

(Conventional anti-kT algorithms using kT instead of E not good for low pT jets)
Change the jet axis from one to another (WTA→ E-scheme), “film” nonperturbative physics.

WTA scheme:

n̂r =

{
n̂1 , if E1 > E2
n̂2 , if E2 > E1

Pin
n̂
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Azimuthal asymmetry
sin(φJ + φs) azimuthal asymmetry:

A(ζ, y, φs, φJ , PJ⊥) = 1 + ε|S⊥| sin(φJ + φs)
FUT

FUU

FUT ∼ h1 ⊗ JT , probes transversity
We simulate using Pythia 8.2+StringSpinner [Kerbizi, Loennblad (2021], with jet charge [Kang, Liu,
Mantry, Shao (2020)] measured to enhance flavor separation (not mandatory), with EIC kinematics.
Use the spherically-invariant jet algorithm [Cacciari, Salam, Soyez (2012)]

dij = min(E
−2
i , E

−2
j )

1− cos θij

1− cosR
, diB = E

−2
i

(Conventional anti-kT algorithms using kT instead of E not good for low pT jets)
Change the jet axis from one to another (WTA→ E-scheme), “film” nonperturbative physics.

E-scheme:

kr = k1 + k2

Pin n̂
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e+e− annihilation

We demonstrate prediction on azimuthal asymmetry in e+e− annihilation at√
s =
√

110 GeV, with WTA scheme and parametrized nonperturbative
Sudakov for JT :

RJ1J2 = 1 + cos(2φ1)
sin2 θ

1 + cos2 θ

FT (qT )

FU (qT )

R = 2

∫
d cos θ

dφ1

π
cos(2φ1)RJ1J2

PJ1
PJ1,⊥

l1

l2

ϕ1

PJ2
θ

0. 0.5 1.
0.

0.02

0.04

0.06

qT(GeV)

R
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Sumary and outlook

We introduce the T-odd jet function, which is relevant for
low pT jets, i.e. jets at EIC.

Using T-odd jet function, together with the traditional
T-even one, we can probe all 8 TMD PDFs at leading
twist using jets.

T-odd jet function has the advantages of universality,
flexibility, and high predictive power.

T-odd jet functions provide new input to the global
analysis of nonperturbative proton structure.
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Thank you.
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Backup slides
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Azimuthal asymmetry at leading twist

Couplings of Φ and J encoded in angular distribution:

dσ

dxdydzdψdφJdP 2
J

=
α2

xyQ2

{(
1− y +

y2

2

)
FUU,T + (1− y) cos(2φJ)F

cos(2φJ )
UU

+ S‖(1− y) sin(2φJ)F
sin(2φJ )
UL + S‖λey

(
1− y

2

)
FLL

+ |S⊥|
[(

1− y +
y2

2

)
sin(φJ − φS)F

sin(φJ−φS)
UT,T + (1− y) sin(φJ + φS)F

sin(φJ+φS)
UT

+(1− y) sin(3φJ − φS)F
sin(3φJ−φS)
UT

]
+ |S⊥|λey

(
1− y

2

)
cos(φJ − φS)F

cos(φJ−φS)
LT

FUU,T , FLL, F
sin(φJ−φS)
UT,T , F

cos(φJ−φS)
LT : contain T-even parts of Φ and J

F
cos(2φJ )
UU , F

sin(2φJ )
UL , F

sin(φJ+φS)
UT , F

sin(3φJ−φS)
UT : contain T-odd parts of Φ

and J
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The F ’s are convolutions of TMD PDFs and jet functions:

C[wfJ ] ≡ x
∑
a

e2q

∫
d2pT

∫
d2kT δ

(2) (pT + qT − kT )w(pT ,kT )f(x, p2
T )J(z, k2

T )

FUU,T = C[f1J1] , FLL = C[g1LJ1]

F
sin(φJ−φS)
UT,T = C

[
−
ĥ · pT
M

f⊥1⊥J1

]
, F

cos(φJ−φS)
UT,T = C

[
ĥ · pT
M

g1TJ1

]
,

F
cos(2φJ )
UU = C

[
−

(2(ĥ · kT )(ĥ · pT )− kT · pT )

M
h⊥1 JT

]

F
sin(2φJ )
UL = C

[
−

(2(ĥ · kT )(ĥ · pT )− kT · pT )

M
h⊥1LJT

]
F

sin(φJ+φS)
UT = C

[
−ĥ · kT h1JT

]
F

sin(3φJ−φS)
UT = C

[
2(ĥ · pT )(pT · kT ) + p2

T (ĥ · kT )− 4(ĥ · pT )2(ĥ · kT )

2M2
h⊥1TJT

]

where ĥ ≡ PJ⊥/|PJ⊥| and h1 ≡ h1T +
p2
T

2M2 h
⊥
1T
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