GTMD Model Predictions for Diffractive Dijet Production at EIC [2106.15148]

Chalis Setyadi [supervised by Daniël Boer]

Van Swinderen Institute for Particle Physics and Gravity,
University of Groningen, The Netherlands

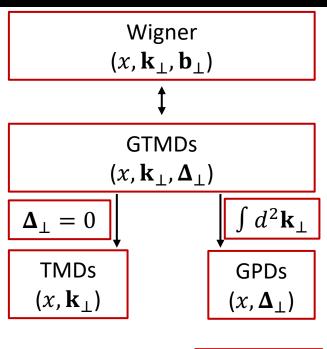
Precision Studies on QCD at EIC 19-23 July 2021

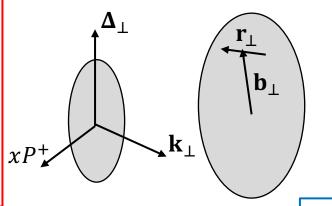
Outline

☐ Definitions of GTMDs
☐ Probing Gluon GTMDs
lacktriangle Model for the unpolarized gluon GTMD at small x .
Exclusive diffractive dijet production
☐ Model Fit to H1 Data
☐ Model Predictions for EIC
☐ Conclusions

Definitions of GTMDs

- Generalized Transverse Momentum Dependent parton distributions (GTMDs) are 5-dimensional parton distributions, a function of: [Ji 2003]; [Belitsky, Ji, Yuan, 2004]
 - \circ parton's longitudinal momentum fraction x (1-dimension),
 - \circ parton's transverse momentum ${\bf k}_{\perp}$ (2-dimensions), and
 - \circ parton's transverse off-forwardness Δ_{\perp} (2-dimensions).
- ☐ Two definitions of GTMDs: [Soper, 1977]; [Diehl, 2002]; [Burkardt, 2016]
 - 1. The off-forward generalization of TMD.
 - 2. Transverse momentum dependent generalization of the impact parameter dependent GPD (the Fourier transform of the Wigner distribution).
- ☐ Accesssible in experiment, such as in diffractive dijet production DIS (gluon GTMDs). [Hatta, Xiao, Yuan, 2016]





Probing gluon GTMDs

$$q(x, \boldsymbol{b}_{\perp}) = \int \frac{d\lambda}{2\pi P^{+}} e^{i\lambda x} \langle P^{+}, \boldsymbol{R}_{\perp} = 0 | \overline{\psi}(-\frac{\lambda}{2}n + \boldsymbol{b}_{\perp}) \gamma^{+} \mathcal{L} \psi(\frac{\lambda}{2}n + \boldsymbol{b}_{\perp}) | P^{+}, \boldsymbol{R}_{\perp} = 0 \rangle$$

Wigner distribution

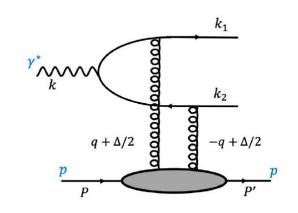
$$W(x, \boldsymbol{k}_{\perp}, \boldsymbol{b}_{\perp}) \equiv \int \frac{d\lambda}{2\pi P^{+}} d^{2}\boldsymbol{r}_{\perp} e^{i\lambda x} e^{i\boldsymbol{k}_{\perp}\cdot\boldsymbol{r}_{\perp}} \langle P^{+}, \boldsymbol{R}_{\perp} = 0 | \overline{\psi}(-\frac{\lambda}{2}n + \boldsymbol{b}_{\perp} - \frac{\boldsymbol{r}_{\perp}}{2}) \gamma^{+} \mathcal{L} \psi(\frac{\lambda}{2}n + \boldsymbol{b}_{\perp} + \frac{\boldsymbol{r}_{\perp}}{2}) | P^{+}, \boldsymbol{R}_{\perp} = 0 \rangle$$

Define GTMDs

$$q_W(x, \boldsymbol{k}_{\perp}, \boldsymbol{\Delta}_{\perp}) \equiv \int \frac{d^2 \boldsymbol{b}_{\perp}}{(2\pi)^2} e^{i\boldsymbol{b}_{\perp}\cdot\boldsymbol{\Delta}_{\perp}} W(x, \boldsymbol{k}_{\perp}, \boldsymbol{b}_{\perp})$$

$$G^{[+,-]}(x, \mathbf{k}_{\perp}, \mathbf{\Delta}_{\perp}) = \frac{2}{P^{+}} \int \frac{dz^{-}}{2\pi} \frac{d^{2}\mathbf{z}_{\perp}}{(2\pi)^{2}} e^{ik\cdot z} \langle P' | \operatorname{Tr} \left[F^{+i} \left(-\frac{z}{2} \right) U^{[+]} F^{+i} \left(\frac{z}{2} \right) U^{[-]} \right] | P \rangle \Big|_{z^{+}=0}$$

 \square Small x limit: diffractive dijet production in ep(A) collisions probes gluon GTMDs



$$G^{[+,-]}(\boldsymbol{k}_{\perp}, \boldsymbol{\Delta}_{\perp}) = rac{1}{2\pi g^2} \left[\boldsymbol{k}_{\perp}^2 - rac{\boldsymbol{\Delta}_{\perp}^2}{4}
ight] G^{[\Box]}(\boldsymbol{k}_{\perp}, \boldsymbol{\Delta}_{\perp}),$$

$$G^{[+,-]}(\boldsymbol{k}_{\perp},\boldsymbol{\Delta}_{\perp}) = \frac{1}{2\pi g^2} \left[\boldsymbol{k}_{\perp}^2 - \frac{\boldsymbol{\Delta}_{\perp}^2}{4} \right] G^{[\Box]}(\boldsymbol{k}_{\perp},\boldsymbol{\Delta}_{\perp}) = \frac{4N_c}{\langle P|P\rangle} \int \frac{d^2\boldsymbol{r}_{\perp}d^2\boldsymbol{b}_{\perp}}{(2\pi)^2} e^{-i\boldsymbol{k}_{\perp}\cdot\boldsymbol{r}_{\perp}} e^{i\boldsymbol{\Delta}_{\perp}\cdot\boldsymbol{b}_{\perp}} \langle P'| S^{[\Box]}(\boldsymbol{b}_{\perp} - \frac{\boldsymbol{r}_{\perp}}{2}, \boldsymbol{b}_{\perp} + \frac{\boldsymbol{r}_{\perp}}{2}) |P\rangle$$

Model for the unpolarized gluon GTMD at small x

$$S^{[\Box]}(oldsymbol{x}_{\perp},oldsymbol{y}_{\perp})
ightarrow 1 - S^{[\Box]}(oldsymbol{x}_{\perp},oldsymbol{y}_{\perp})$$

$$\mathcal{F}^{[\Box]}(\boldsymbol{k}_{\perp}, \boldsymbol{\Delta}_{\perp}) = \frac{4N_c}{\langle P|P\rangle} \int \frac{d^2\boldsymbol{r}_{\perp}d^2\boldsymbol{b}_{\perp}}{(2\pi)^2} e^{-i\boldsymbol{k}_{\perp}\cdot\boldsymbol{r}_{\perp}} e^{i\boldsymbol{\Delta}_{\perp}\cdot\boldsymbol{b}_{\perp}} \langle P'|1 - S^{[\Box]}(\boldsymbol{b}_{\perp} - \frac{\boldsymbol{r}_{\perp}}{2}, \boldsymbol{b}_{\perp} + \frac{\boldsymbol{r}_{\perp}}{2})|P\rangle$$

☐ Impact parameter dependent McLerran-Venugopalan (ep collisions)

$$\mathcal{F}^{[\Box]}(\boldsymbol{k}_{\perp},\boldsymbol{\Delta}_{\perp}) = 4N_c\int\frac{d^2\boldsymbol{r}_{\perp}d^2\boldsymbol{b}_{\perp}}{(2\pi)^2}\,e^{-i\boldsymbol{k}_{\perp}\cdot\boldsymbol{r}_{\perp}}e^{i\boldsymbol{\Delta}_{\perp}\cdot\boldsymbol{b}_{\perp}}\,e^{-\epsilon_rr_{\perp}^2}(\left[1-\exp\left(-\frac{1}{4}r_{\perp}^2\chi Q_s^2(b_{\perp})\ln\left[\frac{1}{r_{\perp}^2\Lambda^2}+e\right]\right)\right]}$$

$$Q_s^2(b_{\perp}) = \frac{4\pi\alpha_s^2C_F}{N_c}T_p(b_{\perp})$$

$$T_p(b_{\perp}) = \exp\left(-b_{\perp}^2/(2R_p^2)\right)$$
Proton profile
$$\text{free parameter}_{\text{[Hagiwara, Hatta, Ueda, 2016]}}$$
free parameter

 \square Expansion of \mathcal{F}^{\square}

[Salazar, Schenke, 2019]

$$\mathcal{F}^{[\Box]}(\pmb{k}_\perp, \pmb{\Delta}_\perp) = \underbrace{\mathcal{F}^{[\Box]}_0(k_\perp, \Delta_\perp)}_0 + 2\underbrace{\mathcal{F}^{[\Box]}_2(k_\perp, \Delta_\perp)}_2 \cos 2\theta_{k\Delta} + ...,$$
 Angular independent Elliptic, small w.r.t \mathcal{F}_0

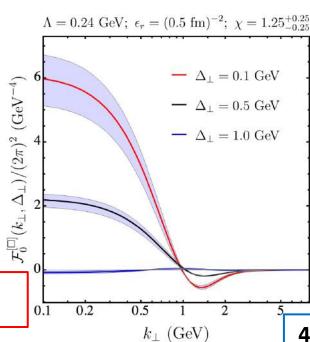
$$K = \frac{k_1 - k_2}{2}$$

$$\Delta = k_1 + k_2$$

[Hagiwara, Hatta, Ueda, 2016] [Salazar, Schenke, 2019] [Mäntysaari, Mueller, Schenke, 2019]

[Pelicer, De Oliveira, Pasechnik, 2019]

Small contribution from $\Delta_{\perp} > 1$ GeV



 $q + \Delta/2$

Exclusive diffractive dijet production

 \square Relate: γ^*p to ep (diffractive dijet in DIS)

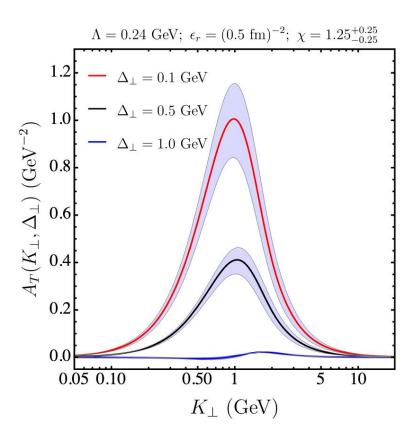
$$\frac{d\sigma^{ep}}{dx\ dQ^2} = \frac{\alpha_{em}}{\pi x Q^2} \left[\left(1 - y + \frac{y^2}{2} \right) \sigma_T^{\gamma^* p} + (1 - y) \sigma_L^{\gamma^* p} \right]$$

 \square Photoproduction: $Q^2 = 0$

$$\frac{d\sigma^{\gamma p}}{dz_1 dz_2 dK_{\perp} d\Delta_{\perp}^2} = \frac{(2\pi)^4 \alpha_{em}}{16N_c} \sum_f e_f^2 \, \delta(z_1 + z_2 - 1) \left[z_1^2 + z_2^2 \right] \frac{A_T^2(K_{\perp}, \Delta_{\perp})}{K_{\perp}}.$$

$$A_T(K_{\perp}, \Delta_{\perp}) = \frac{1}{(2\pi)^2} \int_0^{K_{\perp}} dq_{\perp} \, q_{\perp} \, \mathcal{F}_0^{[\Box]}(q_{\perp}, \Delta_{\perp})$$

[Hagiwara, Hatta, Pasechnik, Tasevsky, Teryaev, 2017] [Pelicer, De Oliveira, Pasechnik, 2019] with different convention



Exclusive diffractive dijet production

\Box Electroproduction: $Q^2 > 0$

Transverse

$$\frac{d\sigma_T^{\gamma^* p}}{dz_1 dz_2 dK_{\perp} d\Delta_{\perp}^2} = \frac{(2\pi)^4 \alpha_{em}}{16N_c} \sum_f e_f^2 \ \delta(z_1 + z_2 - 1) \left[z_1^2 + z_2^2 \right] \frac{\mathcal{A}_{\rm T}^2(K_{\perp}, \Delta_{\perp}, z_i, Q)}{K_{\perp}}$$

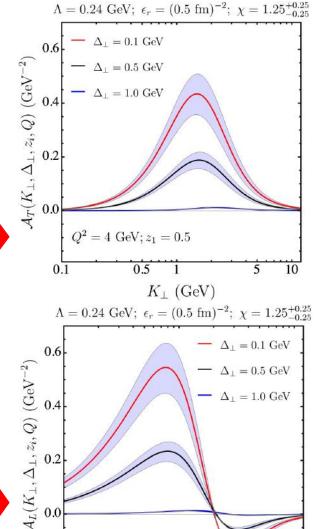
$$\mathcal{A}_{\mathrm{T}}(K_{\perp}, \Delta_{\perp}, z_{i}, Q) = \frac{1}{(2\pi)^{2}} \int_{0}^{\infty} dq_{\perp} \; \frac{q_{\perp} \; \mathcal{F}_{0}^{[\Box]}(q_{\perp}, \Delta_{\perp})}{2} \left[1 + \frac{K_{\perp}^{2} - q_{\perp}^{2} - z_{1}z_{2}Q^{2}}{\sqrt{(K_{\perp}^{2} + q_{\perp}^{2} + z_{1}z_{2}Q^{2})^{2} - (2K_{\perp}q_{\perp})^{2}}} \right]$$

Longitudinal

$$\frac{d\sigma_L^{\gamma^* p}}{dz_1 dz_2 dK_{\perp} d\Delta_{\perp}^2} = \frac{(2\pi)^4 \alpha_{em}}{4N_c} \sum_{\mathbf{f}} e_f^2 \ \delta(z_1 + z_2 - 1) z_1^2 z_2^2 \frac{\mathcal{A}_L^2(K_{\perp}, \Delta_{\perp}, z_i, Q)}{K_{\perp}}$$

$$\mathcal{A}_{L}(K_{\perp}, \Delta_{\perp}, z_{i}, Q) = \frac{1}{(2\pi)^{2}} \int_{0}^{\infty} dq_{\perp} \ q_{\perp} \ \mathcal{F}_{0}^{[\Box]}(q_{\perp}, \Delta_{\perp}) \left[\frac{K_{\perp}Q}{\sqrt{(K_{\perp}^{2} + q_{\perp}^{2} + z_{1}z_{2}Q^{2})^{2} - (2K_{\perp}q_{\perp})^{2}}} \right]$$

small



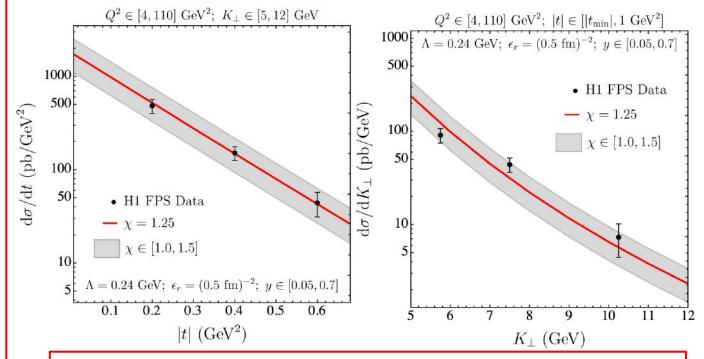
 $Q^2 = 4 \text{ GeV}; z_1 = 0.5$

0.5

 K_{\perp} (GeV)

Model Fit to H1 Data

- ☐ Fit to H1 data for the production of two central jets [Aaron *et al*, 2012].
- \square Fairly good agreement with the data for t and K_{\perp} -dependence simultaneously.
- \Box *t*-dependence :
 - The slope is controlled by the proton profile e^{-bt} with $b \sim 6 \text{ GeV}^{-2}$.
 - Central value: $\chi = 1.25$, $\epsilon_r = (0.5 \text{ fm})^{-2}$.
- \square K_{\perp} -dependence :
 - Expect $q_{\perp} \ll K_{\perp}$ for large K_{\perp} .
 - Approximate $K_{\perp} \approx k_{1 \perp}$.
 - \circ Small contribution from longitudinal part: \sim 10% for K_{\perp} =12 GeV, becomes smaller for small K_{\perp} .



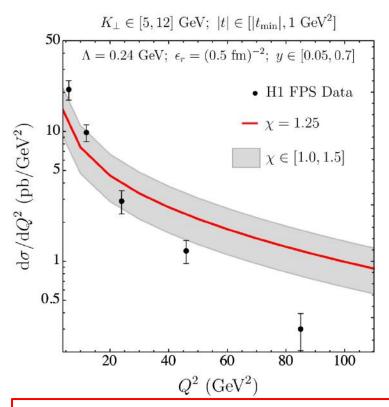
Lower-band : $\chi = 1.0$

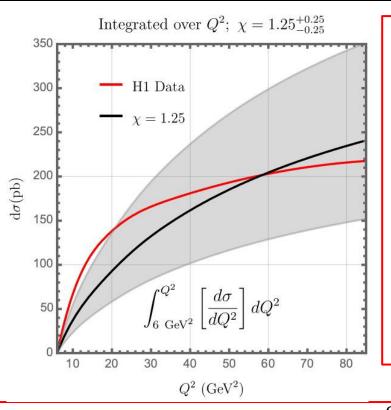
Upper-band : $\chi = 1.5$

 $t_{\rm min} \sim 0 {\rm GeV}^2$

- H1 data: at least two jets.
- Assumption: the dijet contribution dominates and the corrections are α_s suppressed.

Model Fit to H1 Data





\square Q^2 -dependence :

- [Left figure] Expect $\chi > 1.25$ for small Q^2 (smaller x), and $\chi < 1.25$ for large Q^2 (larger x).
- [Right figure] The central values of the H1 data as function of Q^2 fall within the range of the Q^2 integral of the model.

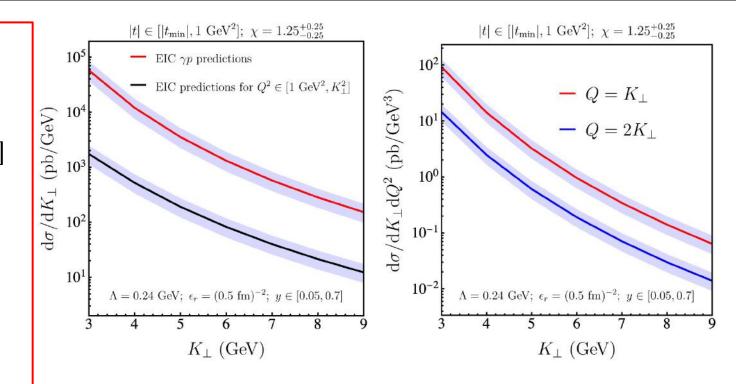
- \square GBW, saturation scale corresponding x values: $Q_s^2(x) = A^{\frac{1}{3}} \left(\frac{3.10^{-4}}{x}\right)^{0.3}$ [Golec-Biernat, Wüsthoff, 1998]
- \square $Q_s^2(x) \to \chi Q_s^2(x)$, the free parameter associated with the saturation scale:

$$\chi = 2\left(\frac{3.10^{-4}}{x}\right)^{0.3} \rightarrow \chi = 1.25 \pm 0.25$$
 corresponds to $\chi \sim (1-3)10^{-3}$.

Model Predictions for EIC

☐ [Left figure]

- \circ [Red line: photoproduction] γp predictions: $Q^2=0$ GeV.
- [Black line: leptoproduction] $Q^2 \in [1 \text{ GeV}^2, K_{\perp}^2]$ predictions
- \square [**Right figure**] $\frac{d\sigma}{dK_{\perp} dQ^2}$ for Q depend on K_{\perp}
 - \circ Smaller cross section for large Q^2 .
 - Expect $\chi > 1.25$ for small Q^2 , and $\chi < 1.25$ for large Q^2 .



- Center of mass energy of EIC lower than HERA: select $3 \le K_{\perp} \le 9 \text{ GeV}$.
- \Box Fixed flavor case $N_f = 4$.
- \square Focus on small Δ ($t \in [t_{\min}, 1 \text{ GeV}^2]$) as in HERA.

Conclusions

\Box The small-x (MV-like) gluon GTMD model can describe the Δ_{\perp} and K_{\perp} dependence of the diffractive dijet production H1 data fairly well and simultaneously.
$lacksquare$ The Q^2 dependence requires consideration of an x dependent model.
☐ This GTMD description can be further tested at the EIC.

Thanks ...