

Polarized Proton Operations in Run 22

V. Schoefer

9/16/2021

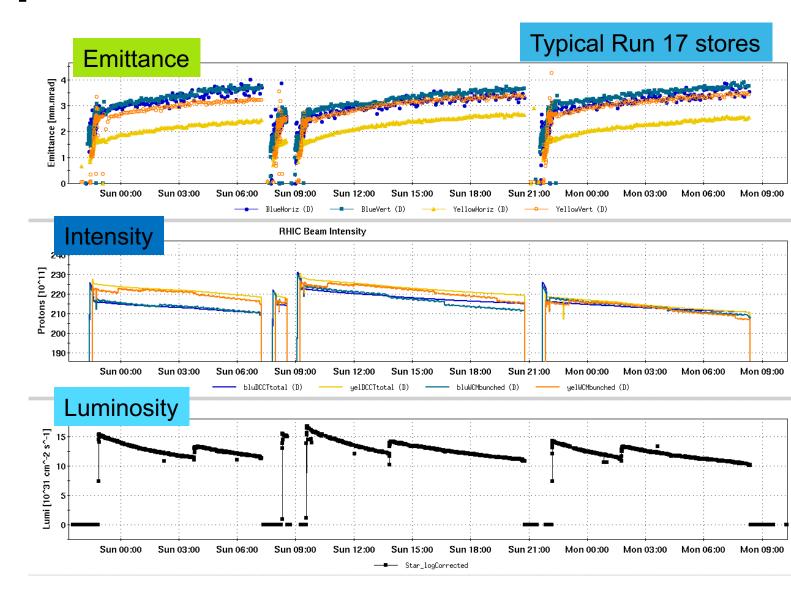
Overview

Polarized proton physics running

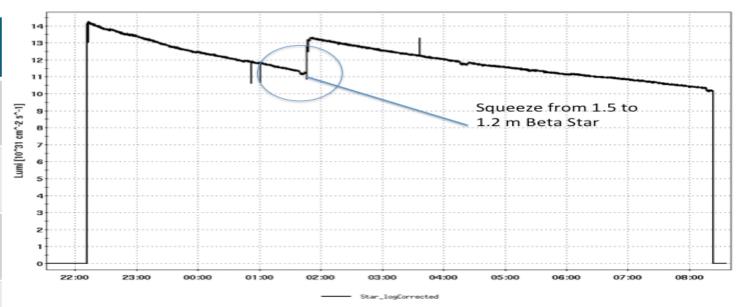
Operational requirements

Injector split/merge scheme

RHIC spin resonance correction


Other developments and operating modes

Operational schedule and plan


Polarized proton operation

- Polarized proton collisions at 255 GeV
 - 16 weeks
 - + 2 weeks of CeC
- Conditions similar to Run 17
 - Collisions at IP6 only
 - Cogging: abort gap collision at IP8-2
 - Luminosity capped at 14×10³¹ cm⁻²s⁻¹
 - (limited) Leveling via second beta*
 - No crossing angle/misteering
 - Transverse polarization only (no rotators)
- Operational RF:
 - Inject/accelerate: 9 MHz+Landau
 - Rebucket: 28 MHz
 - Store: 28 MHz + 197 MHz

Typical Run 17 Store

	Start of store	
Intensity (/bunch)	2 x 10 ¹¹	
Emittance (trans,norm)	2.5	um,rms
Luminosity	14×10 ³¹	cm ⁻² s ⁻¹
Polarization (avg)	55%	

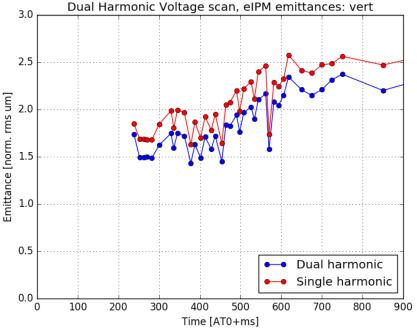
Polarized equipment, systems and software

- Polarimetry (Linac, AGS, RHIC)
- AGS (2) and RHIC (4) helical dipole snakes
- Polarimeter applications: polarControl, krisch sheet, SpinOrchestrator
- AGS tune jump quadrupoles, software, Ggamma meter
- AGS tune meter
- AGS transverse damper (vertical only)
- Booster tune meter and AC dipole
- •

Space charge at AGS injection

AGS has large space charge tune shifts at injection (intensity = 2.5×10^{11})

$$\Delta Q_{sc}(x,y) = -0.17, -0.25$$


Run 17 operation:

Observations of peak current-driven emittance growth at low energy in AGS

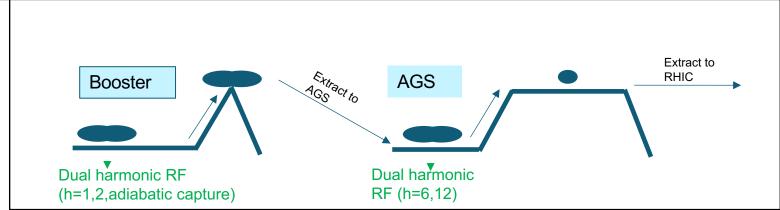
- Added defocusing RF voltage:
 - Single bunch captured on h=6, defocused with h=12
 - 20% reduction in peak current
 - 15% reduction in vertical emittance

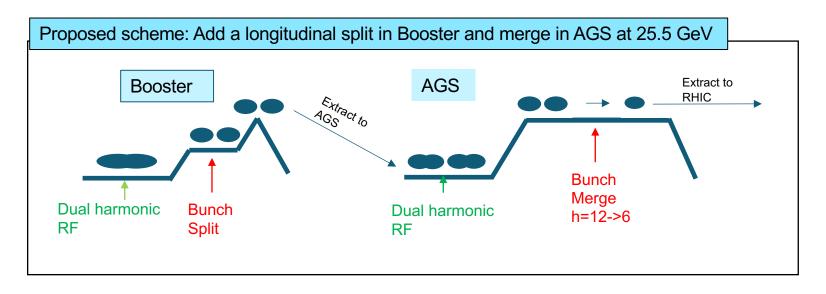
AGS Longitudinal distribution (WCM, inj. energy)

Bunch split and merge scheme

Present scheme:

A single pulse from the source remains a single bunch from source to collision

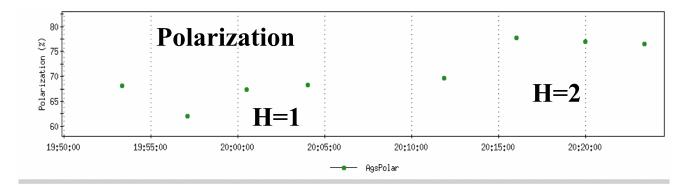

Booster and AGS injection both have defocusing RF harmonics

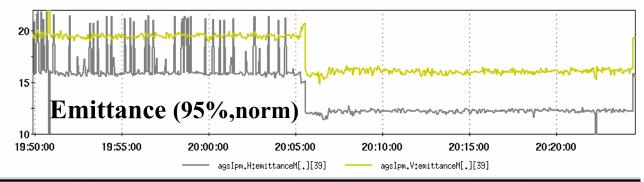

Add a 1->2 bunch split during acceleration in the Booster

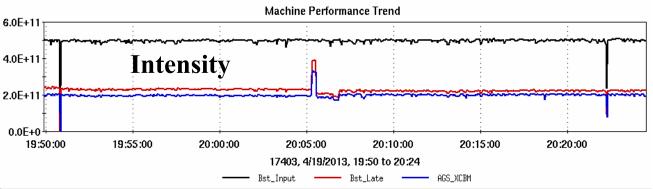
Reduces peak current at AGS injection by $\sqrt{2}$ (optimally)

Requires a 2->1 merge at AGS extraction energy of 25 GeV to recovery the per bunch intensity

Present scheme: Single bunch from source to RHIC, dual harmonic RF at Booster and AGS injection

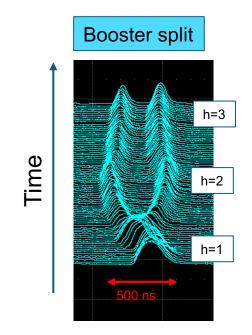

Two bunches in AGS from Run 13

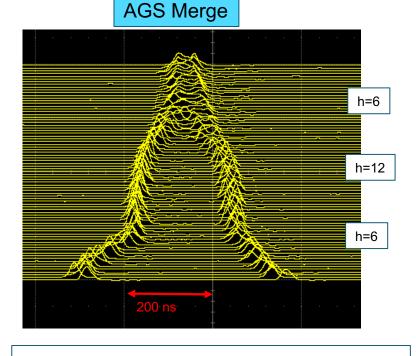

In Run 13, proton bunches were captured on h=2 at Booster injection and accelerated to AGS extraction as two bunches as a test


Improvement at the time

- 20% emittance improvement
- 12% (relative) polarization improvement

The proposed scheme splits in the Booster instead of h=2 capture to preserve dual harmonic capture (which gives lower peak currents at Booster injection)


4/19/2013	В	B_{input}	B_{late}	A_{CBM}	$MW006_H$	$MW006_V$	AGS_H	AGS_V	$P_{ave.}$
	h	10^{11}	10^{11}	10^{11}	$\pi \mu m$	$\pi \mu m$	$\pi \mu m$	$\pi \mu m$	%
19:53 - 20:04	1	5.0	2.30	2.00	10.5	3.49	16.0	19.8	66.5
20:11 - 20:23	2	5.0	2.25	2.02	11.9	3.13	12.3	16.1	75.2


Data from H. Huang

Run 21 Split/merge test

January 2021 pre-run test

- Test the longitudinal mechanics
- Basic proton setup (no snakes)
- Interleaved with two other proton efforts
- Synch period at AGS flattop is 12 ms
 - Merge takes a full second
 - Hard to maintain constant, adiabatic conditions

Booster RF:

- Capture on h=1, defocus (h=2)
- Accelerate to merge porch
- Split $h=1\rightarrow h=2$
- 'Squeeze' h=3 to get bunch spacing for BtA transfer

AGS RF:

- Capture on h=6, defocus (h=12)
- Accelerate to flattop
- Squeeze h=6 \rightarrow 12
- Merge h=12 \rightarrow 6

Run 21 Split/merge test: Emittance growth

- Measured longitudinal emittance growth in the AGS
 - Factor 1.4 during acceleration
 - Factor 1.25 from merge
- Longitudinal emittance of protons not optimized in normal ops (to prevent instability in RHIC)
 - Leaves some room to recover some of the merge dilution
- Where does the 40% dilution during the AGS ramp come from?
 - Subject of another January proton study, still not clear

	Longitudinal Emit		
	As measured	Run 22 plausible	
Booster extraction	0.8	0.6	Sum of 2 bunches
AGS flattop, pre- merge	1.11	0.8	Sum of 2 bunches
AGS flattop post- merge	1.38	1.0	Single bunch

Split/merge: Operations

The 1 second merge, polarization measurement and extraction do not all fit in series on the AGS flattop

Present flattop schedule: No merge

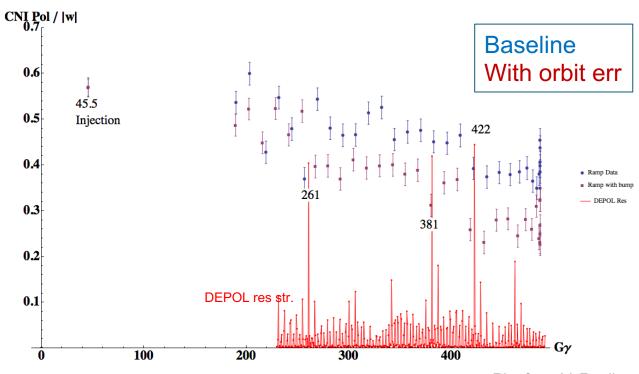
Time on flattop:	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450
(ms)	SYNCHRO EXT BUMP UF EXTRACTION EXT BUMP DOWN							POLARIZATION														DUMP								

Proposal: Merge, swap extraction and polarization measurement

Time on flattop:	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500	1550	1600	1650	1700
(ms)	1	MERGE											SYNCHRO EXT BUMP UF EXTRACTION EXT BUMP DOWN									DUMP													
																					POLARIZATION														

- Extend flattop by ~250 ms
- Swap 'modes': either extraction mode or pol measurement mode. Managed via tape.
 - Needs extra software checks in pC application.
- Disadvantages:
 - Polarization measurement has 600 ms/cycle rather than 700 ms
 - Measured beam has not gone through the extraction process.
 - Extraction on/off polarization has been measured the same many times historically
 - Checking on this in the proposed setup is harder, but possible.

RHIC Imperfections and Resonance Overlap


Run 17 APEX

- Slow ramp (~45 min!)
- Mid-ramp pC measurements
- with and without applied orbit imperfections

Lessons:

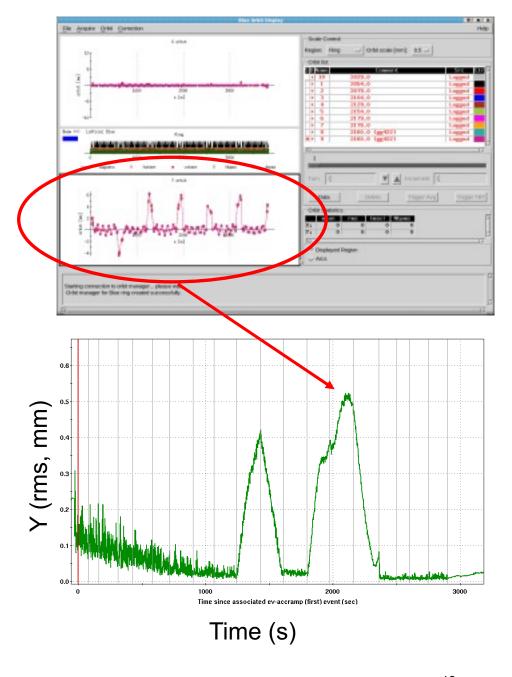
Polarization loss localized at major intrinsics (not obvious from previous full ramp speed measurements)

Worse with a strong overlapping imperfection

Plot from V. Ranjbar

RHIC Imperfections and Resonance Overlap

Attempts to infer absolute orbit from measurements are so far unsuccessful


Proposal:

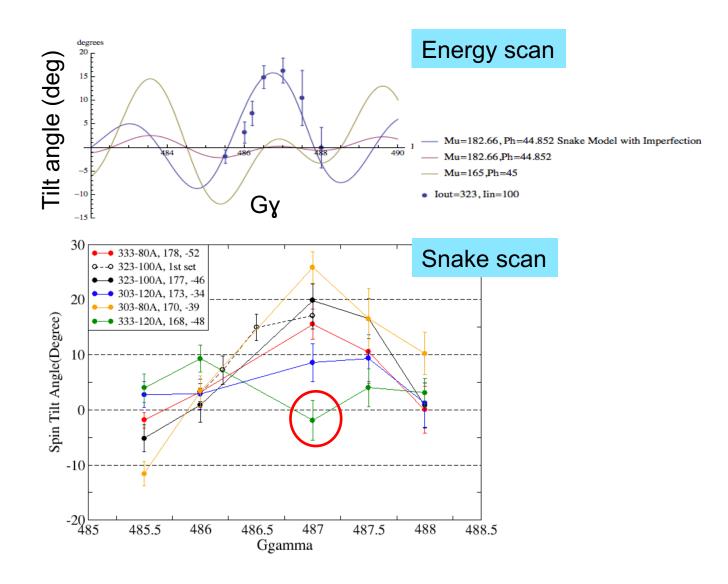
Brute force scan of individual imperfection knobs at three strongest resonances

3 resonances x 2 phases = 6 scans 4 points per scan = 24 points (= 24 ramps, which could be physics ramps)

5 pC measurements at injection and store (each) gets +/- 3% pts uncertainty for transmission each ramp ($P_{final}/P_{initial}$)

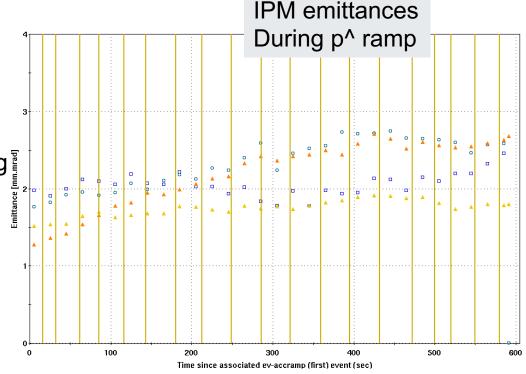
Simulations necessary (underway) to determine optimal scan parameters to get measurable response

Spin Tilt at 255 GeV


Spin away from vertical by 12-15° at pC location at 255 GeV (Gy = 487)

- Run 17 snake and energy scan
 - Snake detuning+large imperfection (0.2) mimics effect

There *are* snake settings that gave zero tilt at 255 GeV (locally)


Relevant to EIC: Understanding both the actual source and corrective mechanisms (not necessarily identical tasks)

Need a plan for measurements and analysis

Some additional avenues for improvement

- Transverse dampers
 - Used to good effect with low energy Au (originally designed for proton beam-beam instabilities with elens
 - Worth testing against proton emittance growth during injection and acceleration
- 'Bunch flattening' with 28 MHz at proton injection
 - Also used during low energy Au
 - Worth testing at injection (simple on/off testing)
 - Operational implementation could very complicated (28 MHz cavities would need to be reconfigured for rebucketing during the ramp)
- Higher 9 MHz voltage (+ ~30% relative to Run 17)
 - Possible small improvement in early ramp losses

Additional operating modes

- "Program time"
 - Polarized protons at 255 GeV (16 weeks)
 - CeC Au at 26.5 GeV/n (2 weeks)
 - PAC recommendation to accommodate the CeC beam request "as early as possible in Run 22 in order to allow for optimized STAR data taking"
- APEX and development
 - ³He at 100 GeV/n (one ring) for polarimetry development (Run 14 configuration)
 - Au at low energy (3.85 GeV/n) for LEReC development
 - E-lens development (no additional beam mode necessary)

General setup approach:

- Single minded setup of polarized protons to the Run 17 configuration baseline store performance as soon as possible.
- Make use of the 8 hour stores to begin setting up other modes
 - (during BES-II we often set up many modes 'up front' before turning over to physics)
- Retain right to take day shifts to transition in other setups (e.g. split merge)

Beam scheduling

• 9/20 MCR Pre-injector, Booster checkout

• 9/27 NSRL Beam setup

• 10/18 Begin AGS checkout

10/27 AGS beam setup

• 11/1 - 11/5 RHIC Dry Run

RHIC 4K wave Week of 11/15

RHIC Beam following the 4K wave

Summary

- Polarized proton operation at 255 GeV with Run 17 physics requirements with possible improvements:
 - Injector split/merge to improve emittance and polarization (20% and 10% relative, respectively)
 - RHIC imperfection resonance correction for both ramp and store
- Other operating modes largely repeated RHIC configurations
- RHIC Dry Run starts November 1, announcement (with checkout tracker link) to follow soon