
### Polarimetry status & plans Run22

W. Schmidke (for polarimetry group) RHIC retreat 16.09.21

#### <u>proton-Carbon (pC) polarimeter → Run22:</u>

- detectors & targets
- preps so far
- status & plans



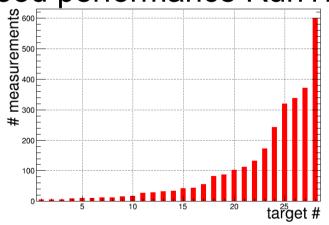


2 pC each in Blu, Yel

#### Some polarimeter R&D for EIC:

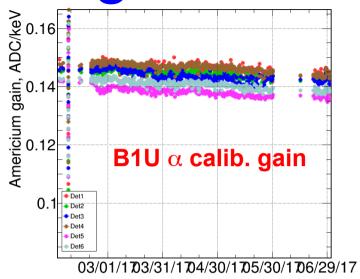
- pC 2<sup>nd</sup> detector layer test
- <sup>3</sup>He beam breakup tagging test

Hjet polarimeter status & developments: A Zelenski next talk


### **Detectors & Targets**

#### **Detectors**:

- New from BNL Inst. late 2016
- Tested ~35 w/ α source Dec. 2016
   29 OK, 24 used for Run17
- Detectors showed minor gain drop throughout run, here e.g. B1U:
- Stored in dry box 2017-2021
- Reuse for Run22


### Targets (D. Steski):

• Good performance Run17:



many targets survived >100 measurements

- Same specs/ for Run22: 50 nm × 10 μm
- ~180 ready, need 48 to fill pC polarims.
- Field smoothing disks on target frames:







### pC preps so far

coordination: Instr. Syst. Tech. Support T. Curcio, S. Jao, ...

- Last polarized proton Run17 → 4 years HI operation
- After Run17: every pC component not welded in place removed from tunnel → safe storage pC chamber wrapped → bake out

#### Last few months start reassembly, highlights:

- Bake out equipment removed
- Step motors (target movement) reinstalled, tested & lubricated, one balky motor replaced, all working OK now
- Detectors (24) on flanges reinstalled, RF screens in place
- Preamps (24) tested & reinstalled (1 flange pins bent, replaced)
- $\bullet$  Am & Gd  $\alpha$  calibration sources reinstalled
- HV & LV supplies, test pulse fanout reinstalled; HV comm. restored
- All power & signal cables connected
- Vacuum: shutter valve leaked (target material?)
   reassembled bake out again required:

Blue finished, Yellow this week

 Target video cameras reinstalled, will align & focus after targets in:



frame from old video: target in beam

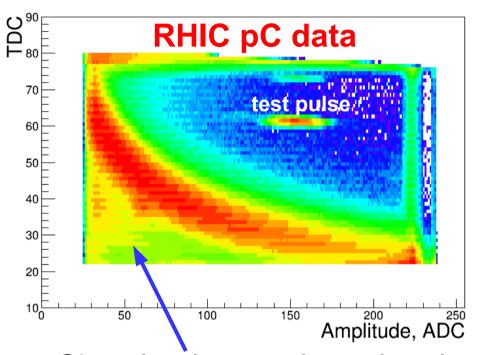
### pC status & plans

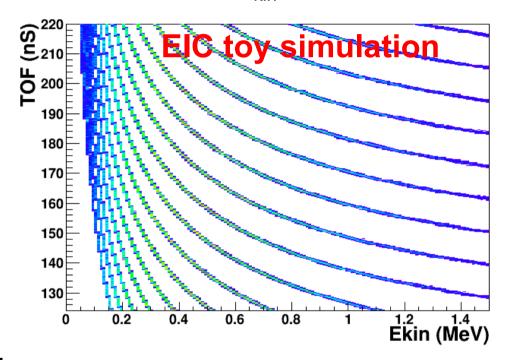
- ullet Blue bakeout finished, detector bias on &  $\alpha$  signals OK
- Yellow bakeout finishing now, bias &  $\alpha$  tests next
- Install targets mid-October, slow pumpdown...

#### DAQ readout system: (usual experts in Moscow, consulting)

- Blue working w/ internal clocks, test pulse & α data ⇒ preamps & detectors all OK
- Yellow not working yet, debugging
- No RHIC clocks (from V124), are these available yet?

#### Offline → Results:


- Next: reestablish offline analysis chain rapid (few min.) pC results on web page
- Follow analysis procedures developed recent years
  - normalize pC/Hjet results
  - best values P & uncertainties for physics experiments


#### With beams:

- Target conditioning start of run period
- Fill operation: pC measurements before/after ramp, middle & end fill,  $\alpha$  calib. runs post-dump

### pC 2<sup>nd</sup> det. layer test: motivation

Select recoil C nuclei TOF vs E<sub>kin</sub>: signal TOF ∞1/√E<sub>kin</sub> "banana" curve:





- Clear backgrounds under signal
- @RHIC: signal dilution calibrated out in pC/Hjet normalization
- @EIC: bunch spacing RHIC 106 nS → EIC 11 nS
  - background overlaps w/ adjacent bunches
  - background small but ≠0 asym., may dilute/enhance signal asym.
  - a real mess; need way to minimize backgrounds
- Simulation: backgrounds fast  $\alpha$ ,p, $\pi$  punch through Si det.
- Tag in 2<sup>nd</sup> detector layer?

### pC 2<sup>nd</sup> det. layer test: implementation

Detector on existing flange:

signal & bias feedthrough

 Make new flange: replace unused feedthrough: with 25-pin feedthrough

• Mount 2<sup>nd</sup> det. (rotated 180°) above 1<sup>st</sup> (on extender pins)

Det. back: no ceramic





unused \_ feedthrough

- 2<sup>nd</sup> preamp behind flange: new box for 2 preamp boards
- Preamps each 12 BNC outputs: select any 12 of 24 for readout
   ⇒ no new cables/chan. needed downstream: MUX, DAQ, software, ...
- Readout: use middle 6 chan. from each detector
  - lose ½ chan., statistics one port for polarimetry minimal loss precision
- Try in 2 ports: 2 spare detectors & preamps, available from pool

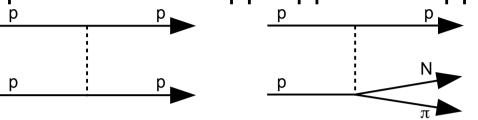
### pC 2<sup>nd</sup> det. layer test: status & plans

#### **Status**

- 2 new flanges each w/ 2 feedthroughs welded
- Delay: unfortunately leaks, pursuing re-welding...
- Preamps ready, 2 preamp boxes planning, fitting

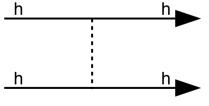
#### **Plans**

- Assemble / fit parts when all ready
- Install in 2 pC ports when targets installed (mid-October)
- If leak-tight flanges not ready, install next opportunity


#### Data analysis

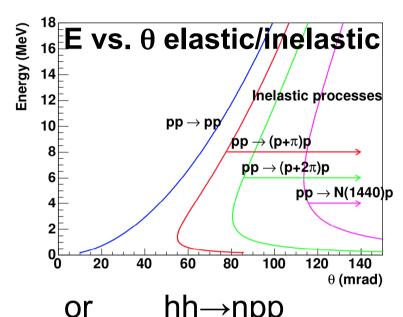
- 2<sup>nd</sup> layer data will come with usual pC measurements i.e. by the 100's
- Correlate 2<sup>nd</sup> layer hits ↔ front layer TOF vs. E<sub>kin</sub>

can we tag non-carbon backgrounds?


### <sup>3</sup>He breakup tag test: motivation

- Absolute polarimetry requires elastic scattering
- Proton polarim. elastic pp→pp versus pp→pX




- Lowest lying p breakup state is p→Nπ,
   Δm = m<sub>π</sub> ~ 140 MeV
- Hjet detectors have E,θ resolution sufficient to separate elastic/inelastic
- ³He≡h polarim.

elastic hh→hh versus inelastic hh→hdp





 $\Delta m = 5.5 \text{ MeV}$ 

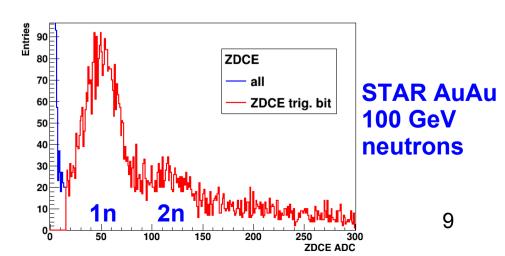


hh→npp h npp h p

 $\Delta m = 7.7 \text{ MeV}$ 

Hjet detectors lack E,θ resolution to distinguish few MeV Δm

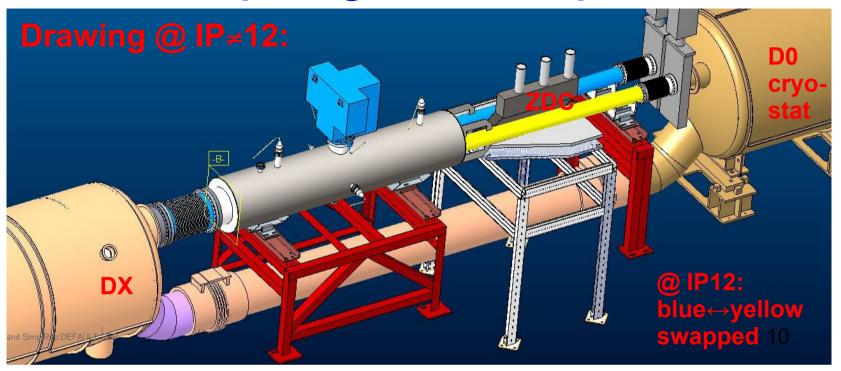
### <sup>3</sup>He breakup tag test: implementation


- Can test w/ <sup>3</sup>He beam, Hjet proton target:
- Downstream (Blue beam direction) from Hjet @ IP12:

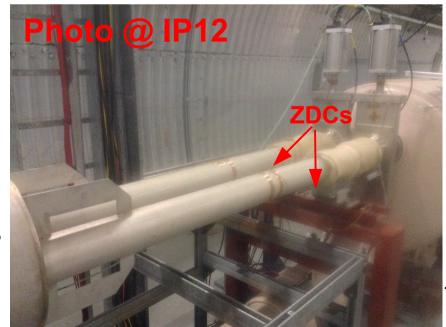
Hjet



Space for taggers up to ~19 m → cryostat


- <sup>3</sup>He fragments swept out of beam, different rigidities:
  - neutrons @ 0° (usual ZDC location collider expts.)
  - protons barely leave beampipe < 19m, scraping, hard to tag
  - deuterons leave beampipe > 19m
- 2 Zero Degree Calorimeters (ZDCs) from old Phobos experiment in hand
  - mediocre hadronic calorimeter
  - adequate for tagging
- ZDC signals → Hjet readout correlate w/ recoil protons




----neutrons-

protons→ ZDC

### <sup>3</sup>He breakup tag test: implementation

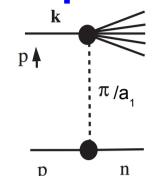


- Spare ZDCs between/outside beampipes after DX
- Support structure is there
- Need:
  - table top
  - ZDC positioning structures
  - ~10 signal/HV cables→Hjet racks
- Installation planned...

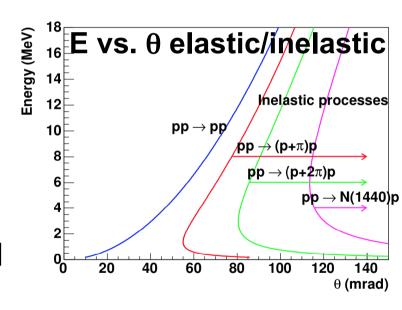


### <sup>3</sup>He breakup tag test: plans

### **Commissioning**


- Can use normal p beam, Hjet:
- Time in readout, pulse height adjust
- Hjet target off: beam-gas background
- E<sub>n</sub> spectrum known, compare, calibrate ZDCs
- Correlate tags w/Hjet recoil p:

E vs  $\theta$ , mass gap?




- <sup>3</sup>He beam in Blue, 100 GeV/A (unpolarized)
- Acquire data few hours
  - rate unclear, Hjet correlated 0.1-1 Hz?
  - some time Hjet target off: b.g. background
- Goals:
  - breakup rate
  - correlate tags w/Hjet recoil p:

E vs  $\theta$ , see mass gap?



- well known π/a<sub>1</sub> exchange process
- studied/used by PHENIX, STAR
- high rate

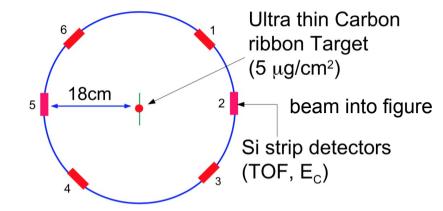


### Summary

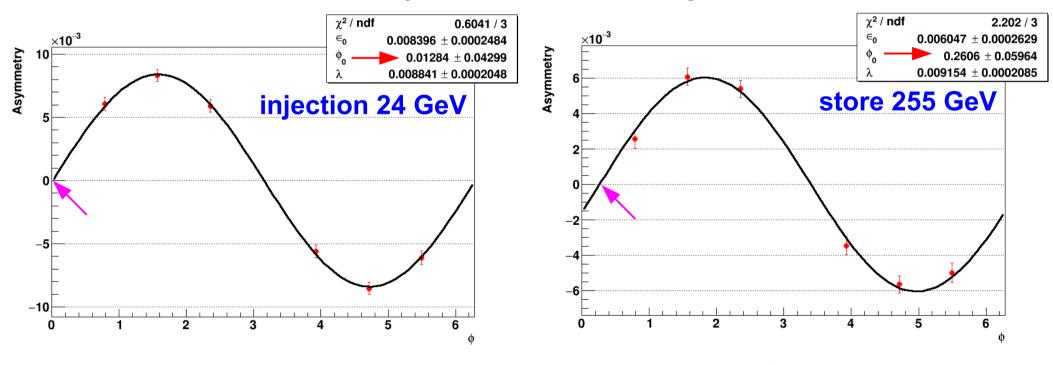
#### Run22 polarimetry

- pC (& Hjet) should be ready by November
- Follow best procedures developed last years: results (P & uncertainties) for experiments
- Hoping for a smooth run

#### Polarimeter R&D for EIC


- Two topics: 2<sup>nd</sup> detector layer, <sup>3</sup>He breakup tagging
- Minimal new hardware:
  - 2 detector flanges, housing for preamps
  - ZDC support structures, cable
- & Tech. Support from Instr. Systems
   (T. Curcio, S. Jao, ...)
- Important results for EIC polarimetry at minimal cost

#### Couple of homework problems


Puzzles @ RHIC impacting RHIC→EIC polarimetry
 & EIC spin experiments >

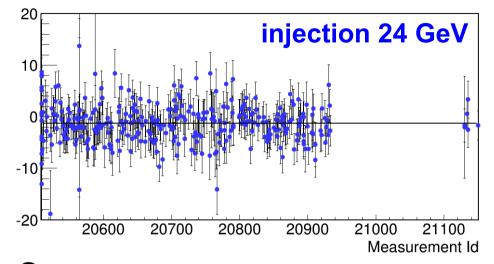
### Spin Vector Tilt Measurement

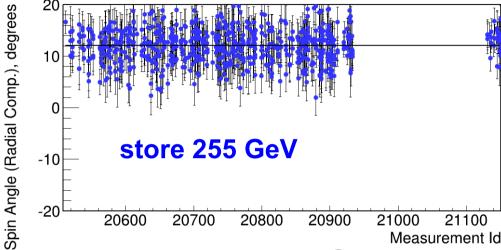
- pC polarimeter near IP12:
  - 6 detectors around beam
  - measure asymmetry vs. azimuthal φ
    - ⇒ transverse magnitude |P|
       & tilt φ₀ from vertical



• Measurements same fill, injection & store energies:




No tilt (<1°) @ 24 GeV, significant tilt (~15°) @ 255 GeV</li>


### Spin Vector Tilt History

Spin tilts stable through run period, e.g. 2017:





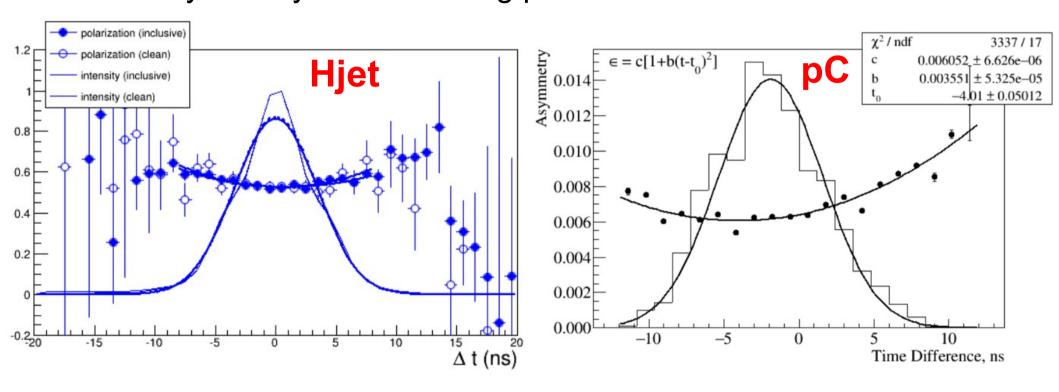




#### <u>Summary</u>

Spin Angle (Radial Comp.), degrees

- Negligible tilt @ 24 GeV
- Small tilt @ 100, 250 GeV
- Significant tilt @ 255 GeV
- Tilt in Blue larger than Yellow
- Blue & Yellow spin vectors both tilted toward RHIC ring center <u>Impacts</u>


- Hjet measures vertical P, correct to pC tilt
- Tilt @ collider experiments?

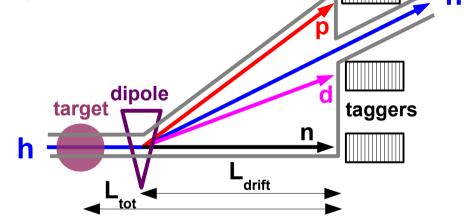
#### spin tilts @ store

| $\phi_{ m pC}(^{\circ})$ | Blu | Yel |
|--------------------------|-----|-----|
| Run9-100                 | 6   | 5   |
| Run11-250                | 3   | 1   |
| Run12-100                | 3   | 3   |
| Run12-255                | 11  | 7   |
| Run13-255                | 16  | 9   |
| Run15-100 pp             | 3   | 2   |
| Run15-104 pAu            | 0   | -   |
| Run15-104 pAl            | 1   | -   |
| Run17-255                | 12  | 8   |
| _                        | 12  | 8   |

### Longitudinal polarization profile

- Well known transverse polar. profile: polarization drops at edges of beam
- Longitudinal profile?
- Asymmetry in t bins along proton bunch:




Polarization lower center of bunch; beam-beam effect?

# Extras

## Tagging <sup>3</sup>He (≡h) breakup @ EIC

- At breakup threshold, fragments travel colinearly with beam; fraction of beam rigidity R<sub>h</sub>: R<sub>d</sub> = 4/3R<sub>h</sub>; R<sub>p</sub> = 2/3R<sub>h</sub>; R<sub>n</sub> = ∞
- Dipole single bend approx., beam bent by  $\theta_h$ :  $\theta_d = \frac{3}{4}\theta_h$ ;  $\theta_p = \frac{3}{2}\theta_h$ ;  $\theta_n = 0$

Require: arrangement target → some dipole → drift space → taggers might look like:



- Require: drift space L<sub>drift</sub> long enough to get fragments out of beampipe vacuum and into taggers
- Fragments from breakup @ threshold define 0° point in taggers;
   breakup above threshold spread around this point
- Require: total target→tagger distance L<sub>tot</sub> as small as possible, maximize tagger angular acceptance