

ALICE ITS3 WP3-4-5 Progress report

Giacomo Contin

Università di Trieste and INFN Sezione di Trieste

EIC Silicon Consortium meeting – May 17th 2021

Summary

- MLR1 Testing campaign plans
- ALPIDE-based DUT Testbeams
- Larger-size chip Thinning,
 Bending and Interconnections
- Mechanics development

2021-02-04

ITS3 project timeline: testing

Testing of MLR1 pixel matrices

From June and for ~1 year

- Short time to prepare the test system and short usage time → avoid custom solutions
- ▶ Provide feedback for ER1 quickly → distribute the characterisation workload
- Solutions: several "carrier cards" + "proximity board"
 - Existing test system, or
 - General purpose components (oscilloscopes, dev boards...)
- ► To keep in mind:
 - Testbeams, bending tests, irradiation, yield...
 - >100 chips on "carrier card"/"proximity boards" & ~20 test systems

X 4 (APTS. DPTS. CE65. CA)

Testing plan & timeline summary

Miko Suljic @ ITS3 Plenary 23.04.2021

- T₀ (June) = delivery of first batch of chips on carriers to testing sites participating in carrier design, software or firmware development
- T₀ + 3 weeks (early July) = decision on the next batch of chips to be bonded and distributed to all testing sites
- T₀ + 7 weeks (early August) = decision on the chip variants to be bonded and irradiated (TID) or bonded after irradiation (NIEL), bonded for further exploration of parameter phase space (APTS)

Testbeam slots:

- mid-Jul @ SPS
- end-Oct @ PS
- beg-Nov @ SPS

Chip testing phase space

)

#	Pitch (um)	Buffer	Coupling	Process	#	Pitch (um)	Buffer	Coupling	Process
1	10	SF	DC	std	19	10	SF+amp	DC	std
2	10	SF	DC	mod	20	10	SF+amp	DC	mod
3	10	SF	DC	gap	21	10	SF+amp	DC	gap
4	15	SF	DC	std	22	20	SF+amp	DC	std
5	15	SF	DC	mod	23	20	SF+amp	DC	mod
6	15	SF	DC	gap	24	20	SF+amp	DC	gap
7	20	SF	DC	std	25	10	SF+amp	AC	std
		SF	DC		26	10	SF+amp	AC	mod
8	20			mod	27	10	SF+amp	AC	gap
9	20	SF	DC	gap	28	20	SF+amp	AC	std
10	25	SF	DC	std	29	20	SF+amp	AC	mod
11	25	SF	DC	mod	30	20	SF+amp	AC	gap
12	25	SF	DC	gap	31	10	OPAMP	DC	std
13	10	SF	AC	std	32	10	OPAMP	DC	mod
14	10	SF	AC	mod	33	10	OPAMP	DC	gap
15	10	SF	AC	gap	34	10	OPAMP	AC	std
					35	10	OPAMP	AC	mod
16	20	SF	AC	std	36	10	OPAMP	AC	gap
17	20	SF	AC	mod	37	10	SF mux	DC	gap
18	20	SF	AC	gap	38	20	SF mux	DC	gap

CE65

Miko Suljic @ ITS3 Plenary 23.04.2021

#	Pitch (um)	Buffer [coupling]	Process
A	15	Amp [AC], Amp [DC], SF [DC]	std
В	15	Amp [AC], Amp [DC], SF [DC]	gap
С	15	Amp [AC], Amp [DC], SF [DC]	Mod
D	25	Amp [AC], Amp [DC], SF [DC]	std

DPTS

#	Pitch (um)	Variant
1	15	Base
2	15	Column cross connect
3	15	column cross connect, shorted DVSS AVSS

To test on splits 1 & 4

To test on split 4

APTS SF (Low sampling rate)

4 weeks 4 weeks 3.a Fine tuning of parameter phase space 2. Coarse parameter Assuming 1 phase step phase space exploration step for each structure 4-15-DC-MOD (= 5 new matrices) 4-15-DC-GAP × 3 yield 4-20-DC-GAP 15 4-20-AMP/DC-STD 4 weeks 4-20-AC-MOD 3.b Radiation hardness × 4 (yield) testing 1xDC + 1xAC + 1xAMP4-15-DC-? As REF (= 3 matrices) X N testing sites 25 ×3 yield × 6 (TID/NIEL) 54

2nd carrier production (~100)

1st carrier production (~15)

1st bonding (~12)

2nd bonding (~25)

3rd bonding (~70)

+ spares!

carrier

Time to provide first feedback

TBD: # testing sites

Miko Suljic @ ITS3 Plenary 23.04.2021

Bent ALPIDE testing

From now to ~next year

- Feasibility tests Done
 - First tests in spring last year, next beam tests in July @SPS

- Lab and beam tests with wire bonded chips done
- SpTab bonded chips bent in lab ongoing
- μITS3 (6 bent chips, various radii) partially done
- Test bent ALPIDE-Superchips ongoing
 - Diced portions of wafers containing many ALPIDE reticles
 - Connection to existing test system & powering scheme being produced

2020 Testbeams

Bent ALPIDE (short side) 18-22 mm radius

Measured inefficiency Vs Threshold (and Row)

Bent ALPIDE (long side)
18 mm radius

April 2021 Testbeam: 3-layer micro-ITS3

Chips exposed for visibility

Goals

ALICE

- 3 ALPIDE telescope
 - \rightarrow µITS3 (4 layers: L0B, L0T, L1T, L2T)
 - → carbon foam

 \rightarrow normal bent setup / parallel ALPIDE / ACF

Moving to larger size: ALPIDE Super-chip

- Idea: cut out large "super chips" from a wafer
- about the area of 1/2 ITS3 half-layer 0
 - ~140 x 60 mm
- 9 x 2 chips
 - 9 interconnection areas in z-direction
- need individual connections:

• spTAB or wire-bonding

• spTAB or wire-bonding

CRALPIDE Wafer Map

Super-ALPIDE project

- Thinning and dicing
 - $30 40 50 \mu m / 9*2 ALPIDE matrix$
 - 30 μm example, as measured by the thinning company through optical scan
 - 18.6 μm average with 1.4 μm st. dev
 - Does not include ~11 μm thick metal stack

- Shipping membrane box for large size dice
 - Larger size needed for final size
 - To be optimized and validated

Super-ALPIDE project: FPC + Exoskeleton

Dimensions, tolerance, details being optimized

15

Super-ALPIDE: wire-bonding @ Bari

- Preliminary wire-bonding test on real ALPIDE, avoiding conflict between bonding head and FPC
 - Loop height: 6.6mm (target: ~ 8mm)
 - Distance between pads along z: 8.7mm
 - First soldering on chip (down), second on FPC (up)
 - Inter-pad bondable distance 220 μm = two consecutive small pads
 - 6 degrees angle between bonding pads direction and wire
 - Interference with previously soldered wires due to clamp dimensions
 - → reduced by rotating the foot at chip pads by 15 degrees

Domenico Colella - Bari

Super-ALPIDE Edge-FPC @ Bari

• First prototype of the final front-edge ITS3 interconnections

Domenico Colella - Bari

Super-ALPIDE wire-bonding setup @ Bari

Component design being finalized or already in production

D. Colella @ ITS3 WP4

ALICE ITS3 WP5

BBM1 DONE

L0= heater; L1= G10 sheet; L2=G10 sheet

BBM 2 ONGOING

L0= heater; L1= heater; L2= heater

New CFRP support design for BBM2 (Plan B for EM)

- Flat edges to minimize glue but have a reasonable gluing area.
- Cross section 1x0.05 mm2

BBM1 Ready for preliminary Test in

wind tunnel

LO equipped with 3 PT1000 temperature sensors.

Next implementation of ..

Laser displacement sensor
Micro-Epsilon ILD2300-20LL
Resolution 0.3micron

Highlights: Engineering model 1 --> Fully assembled

ALICE ITS3 WP5

The first half barrel model with dummy silicon HLS at nominal radius has been completed.

EM1: Improvement of sensor interface to support

Across wedges

Bending

Below wedges

footprint

C. Gargiulo / M. Angeletti @ ITS3 Plenary 23.04.2021

ongoing

MINIMIZE footprint→ special preparation of carbon foam/fleece (also to reduce glue)

MINIMIZE bending → enlarge contact surface i.e. increase number of wedges; continuous wedge (requires vacuum chuck).

Hybrid solution with Al porus vacuum chuck and thin FINGER-maylar foil under investigation

@CERN

Possible engagements in ITS3 WPs towards EIC dev.

- MLR1 test structure and small matrix characterization
 - > Test setup development and sensor characterization for EIC
- Large sensor thinning/bending/interconnections
 - > Development for EIC vertex radii/dimensions
- Mechanics and cooling development
 - ➤ Development for EIC vertex radii/dimensions
 - ➤ Integration with EIC services

23