
CUDA: first impressions

1

Maxim Potekhin

Wirecell meeting at BNL May 22nd 2015

Overview

2

• Information (inlcuding online classes, tutorials etc) on CUDA is plentiful on

the Web - so the purpose of this slides is not to present something deep, but

to hopefully save time for everybody by providing a compressed quick

overview tailored to the group. If everyone knows all of this already, all the

better. I'll be quick.

• I'm not an expert - opinions expressed here are my own, based on a bit of

tinkering with the Nvidia CUDA IDE and running simple tests.

• May help form an initial opinion on usefulness of CUDA for the Wirecell

project.

• Also to facilitate comparison with OpenACC and other accelerator tools (to

be done)

• I'll show a trivial piece of code I wrote for illustration purposes and ran on my

graphics card, and then briefly explain how it relates to the API which in turn

relates to GPU architecture.

What is CUDA?

3

• Wikipedia: CUDA is a parallel computing platform and programming model created by
NVIDIA and implemented by the graphics processing units (GPUs) that they produce.
CUDA gives developers direct access to the virtual instruction set and memory of the
parallel computational elements in CUDA GPUs.

• You trade the speed of the processor for the sheer number of processors available to
your application (~103). Individual cores in the GPU are slow compared to a CPU in
late model PC. According to Wikipedia: "GPUs have a parallel throughput architecture
that emphasizes executing many concurrent threads slowly, rather than executing a
single thread very quickly."

• CUDA SDK was released in 2007 - "somewhat" recently. It was much smaller and
modest in terms of included functionality (e.g. libraries) compared to contemporary
releases.

• Applications (including in physics) followed rather quickly (conference presentations
in 2009)!

• Since 2008 supported on Windows, Linux and Mac.

• Supports a vast number of GPU models produced by NVIDIA.

• Various types of NVIDIA hardware are not created equal. There are "levels" of CUDA
support in each generation, meaning either more or less functionality depending on
the hardware version.

Use in HEP

4

• Despite quick initial adoption, it took time for this technology to be utilized at scale.

• Hardware and software underwent rather rapid evolution, resulting in multiple
versions of both with different functionalities (while retaining a degree of
compatibility). Not every CUDA version works with hardware version XYZ.

• Many large and/or important projects were conceived and/or built before CUDA
reached a degree of maturity and acceptance in the HEP community.

• Structuring computational problems to fully exploit parallelism is a challenge above
and beyond just writing good software. A few important software components (cf.
GEANT4) are older than CUDA and other parallel platforms so provisions for
parallelism were not an integral part of their design.

• GPU adoption simply didn’t reach the critical mass that would result in such facilities
to be built at scale. At the same time, there are supercomputing facilities created for
other reasons that can be exploited opportunistically. A few of the current and future
systems are equipped with CUDA-capable GPUs.

• Finally, a few notable experiment like IceCube and LHCb are in fact utilizing GPUs as
an integral part of their systems (in differing capacities).

• It looks increasingly likely that the trend will continue at a faster pace and we don’t
want to be left behind.

"Device" vs "Host"

5

• In a typical installation, the GPU (often called "the device") resides inside a
more conventional computing hardware, such as a PC, called "the host".

• The host itself can be a node inside a supercomputer.

• Multiple GPUs in a single host are supported:

• in the PC scenario, this is useful to know since heavy GPU use can interfere with
primary function of the graphics card which is being a video adaptor, although in
reality it's the other way around - the driver can kick out computational load from
GPU if it considers it excessive - all tunable, of course.

• provides a straightforward way to scale even in a conventional box

• GPUs don't have an operating system in the conventional sense, so basic
functions such as memory allocation (also freeing memory and others) are
hidden behind an API that can be used from code running on the host.

• Memory is not shared between the host and the device. There is an API
which allows copying of the data in either direction. Communication happens
over the bus (e.g. PCIe) and therefore is a lot slower than RAM access. It is
one of the principal limiting factors for overall performance.

• Functions that are executed on the GPU are termed "kernel".

Elements of CUDA syntax

6

Declaring functions

• __global__ declares kernel, which is called on host and executed on device

• __device__ declares device function, which is called and executed on device

• __host__ declares host function, which is called and executed on host

• __host__ and __device__ can be combined if the same C (C++) function will need to
run on both (obviously compiled differently for each target)

Declaring variables

• __device__ declares device variable in global memory, accessible from all threads,
with lifetime of application

• __constant__ declares device variable in constant memory, accessible from all
threads, with lifetime of application

• __shared__ declares device varibale in block's shared memory, accessible from all
threads within a block, with lifetime of block

• Most routines return an error code of type cudaError_t.

Testbed

7

• I used the graphics card in my home PC (which is high-end but this has no
bearing on the test).

• GTX 970 Engine Specs:

• CUDA Cores: 1664 (128 cores per 13 Multiprocessors)

• Base Clock (MHz): 1050

• Streaming Multiprocessors (SMM): 13 (Maxwell class)

• GTX 970 Memory Specs:

• Memory Clock: 7.0 Gbps

• Standard Memory Config: 4GB (subject to debate due to varying
speed)

• Memory Interface: GDDR5

• Memory Interface Width: 256-bit

• Memory Bandwidth (GB/sec): 224 (subject to debate)

• Misc:

• The card was released last year

• 148W nominal power compared to 230-250 in previous generation (770, 780)

• The 970 is a pretty much a crippled 980 (which has 16 SMM and 2048 cores)

CUDA software

8

• In CUDA, host and device code coexist in a single source file (*.cu) - for the

developer, it looks like normal C++ with a few additional keywords and

decorations (for those who use those in Python).

• On any platform, "nvcc" compiler is used to compile the code, and it in turn

calls the native host compiler (e.g. gcc on Linux or Visual C++ compiler on

Windows) to create runtime binaries.

• You will notice longer compilation times compared to plain vanilla case.

• Quote: "The CUDA development environment relies on tight integration with

the host development environment"... (cf. C libraries etc).

• Using an IDE: the only straightforward way to use CUDA on Windows is via

a kit that works with a specific version of Visual Studio. On Linux there is an

option to integrate with Eclipse, but integration with an IDE is not mandatory

– you can compile and run from the command line.

A trivial test of CUDA (1)

9

• There is a plethora of CUDA tutorials, examples and tests, lots of them covering
problems in multiple dimensions. In addition to a few test I ran and tweaked, I decided
to write something very simple from scratch to gain initial experience before moving to
N-dimensional code. One dimension seemed easy enough, and I chose to implement
a dot product routine - if the vectors being multiplied are very long, it is beneficial to
split the procedure in multiple threads each iterating over a slice of the vectors.

• Used random numbers but switched to same value for vector components for ease of
debugging (fill them with same number).

• In no way should it be considered a GPU performance test or a benchmark as it is not
designed for this (as we will see). Scaling with thread count will be measured, though.

• Kernel is a function that will run on the GPU, in this test there are two:

__global__ void threadedDotProduct(int load, int *inp1, int *inp2, int *interim) {
 int index = blockIdx.x*blockDim.x + threadIdx.x; // this is the global thread index
 for (int i = 0; i < load; i++) interim[index] += inp1[index + i] * inp2[index + i];
}

__global__ void summation(int *array, int N) {
 int sum = 0;
 for (int i = 0; i < N; i++) sum += array[i];
 array[0] = sum;}

A trivial test of CUDA (2)

10

• Running the kernel - looking in the host code. "Load" is simply an integer specifying

the length of the portion of the vector to be processed in one thread, "device arrays"

are vectors being multiplied, "interim array" contains partial sums to be combined later.

• first compute partial dot-product of two vectors in b*t threads... watch for the triple chevron!

 threadedDotProduct<<<b,t>>>(load, device_array_1, device_array_2, interim_array);

• then aggregate partial sums into the final scalar in a single thread

 summation<<<1,1>>> (interim_array, num_inter);

• Memory allocation/deallocation on the device:

int *device_array_1 = 0;

cudaMalloc((void**) &device_array_1, num_bytes);

cudaFree(device_array_1);

Thread1Σ Thread2 Σ Thread3 Σ Thread4 Σ ThreadN Σ

Vector Elements

Threaded dot Product

Aggregated sum

...

(Unscientific)

Scale test 1

11

• Test case - a vector of

1M (10242) integers

• Keep 1 block of

threads and vary their

number

• Use built-in event timer

in CUDA to measure

execution time

• Under these

conditions, we observe

an almost linear with

respect to the number of

threads speed-up due to

parallel execution.

Scale test 2

12

• Keep total number of

threads constant but

vary the number of

thread blocks.

• We observe nearly

constant execution time.

Something is being

obviously done in

parallel!

Scale test 3

13

• Now contunue to raise

the number of threads

from 16 to 512, linear (or

almost linear) increase

of speed continues.

Scale test 4

14

• Finally, with 2 to 4

thousand threads, we

see saturation and then

deterioration of

performance.

• This is to be expected,

since the thread load

becomes very short

while overhead grows

(we also do final

summation in a single

thread).

• Total number of

threads seem to matter

the most, tried same

with varying number of

blocks.

PS. Same operation takes 9ms on a typical RACF interactive node

More on blocks and threads

15

• Why blocks? A block of threads is assigned to a single multiprocessing unit (SMM)

within the GPU, so grouping threads like this allows better management of GPU

workload. There will be queing of threads in the GPU.

• All threads in a block will run the same kernel.

• In the example considered so far, we used a scalar object (number) for blocks and

same for threads: blah<<<b,t>>>(foo);

• This, however, is just a limiting case. Blocks can form a 2D grid, and each block can

handle a 3D array of threads . This is achieved transparently (more or less) for the

user by declaring and defining "b" and "t" accordingly.

• Blocks in the grid must have same size and cannot be resized at runtime.

• Why do people need more than one dimension in these data structures? That is

because the challenge in this type of computing is optimal distribution of workload over

threads, and it assumes segmentation of data which must be mapped to threads

accordingly. Example: when solving a 3D problem, it will be often optimal to map

portions of the 3D volume being processed to a 3D space of threads to exploit the

data layout in a way that leads to computational parallelism.

• OTOH comment - some problems just beg to be solved on such grid, cf. Poisson

equation.

An illustration

16

Cheat sheet

17

• Computing thread indices in multidimensional cases is prone to human error and can be confusing

• Thread indexing "cheat sheet" can be found (in particular) at http://www.martinpeniak.com/. Examples:

1D grid of 1D blocks

__device__

int getGlobalIdx_1D_1D() {return blockIdx.x *blockDim.x + threadIdx.x;}

1D grid of 2D blocks

__device__

int getGlobalIdx_1D_2D() {return blockIdx.x * blockDim.x * blockDim.y+ threadIdx.y * blockDim.x +
threadIdx.x;}

....

2D grid of 3D blocks

__device__

int getGlobalIdx_2D_3D() {

int blockId = blockIdx.x + blockIdx.y * gridDim.x;

int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)

+ (threadIdx.z * (blockDim.x * blockDim.y))

+ (threadIdx.y * blockDim.x) + threadIdx.x;

return threadId;

}

Host-device transfer considerations

18

• Host memory allocation - standard "malloc" will allocate memory which is pageable,

which is not suitable for transfer to the device - it must be locked. This leads to an

additional copy operation from pageable to "pinned" (locked) memory and a

performance penalty. Up to a factor of ~2 difference.

• Actual speed will still depend on hardware.

• This can be avoided using specialized memory allocation function calls included in

CUDA libraries: cudaMallocHost() etc.

• Use with caution - this will reduce available system memory.

Quick notes on memory access

19

• Since host-to-device communications are a critical bottleneck, it pays to deploy

functions which don’t necessarily need parallelism on the device if they use device-

resident data in some processing step, instead of copying it back and forth.

• "Global" memory resides in the GPU DRAM, and it can be accessed and modified

from both the host and the device (e.g. during transfers)

• Global memory can be declared in global (variable) scope using the __device__

declaration specifier as in the first line of the following code snippet, or dynamically

allocated using cudaMalloc().

• Arrays allocated in device memory are aligned to 256-byte memory segments by the

CUDA driver.

• Misaligned access to memory will result in performance penalty (which can be severe

sometimes).

Summary

20

• For many of us this is the first real encounter with GPUs. It does not mean that we

won't consider Xeon and other available parallel computing platforms.

• With CUDA, the barrier to entry into massively parallel computing is extremely low

since NVIDIA GPUs are very common and for the most part inexpensive. This is a big

plus. Oftentimes even laptops are equipped with CUDA-capable GPUs. CUDA

software is readily available and a large knowledge base exists in the developer

community and documentation provided by NVIDIA.

• Apparently despite this platform being rather complex, the initial learning curve is not

too steep (another big plus) and is conducive to experimentation and creativity in

general.

• There is a selection of useful libraries provided with CUDA, which were not discussed

in this presentation. This means that useful results can be achieved quickly and

without low-level programming for some popular classes of problems (FFT, matrix

manipulation etc).

• In addition to consumer or business-grade GPUs installed in workstations and laptops,

there are supercomputing installations where CUDA technology is applied (cf. TITAN

at Oak Ridge and some other Leadership Class Facilities). That indicates potential for

running parallelized DUNE software on such platforms (with DOE's blessing).

Plans

21

• It may be a good idea to explore a few approaches to the current Wirecell framework

from the standpoint of parallel architectures. Optimization problems can be solved

numerically in different ways, and some of these methods may benefit more than

others from deployment on GPUs. This needs to be understood.

• Should we look at fully 3D event model?

