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Overview 
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• Information (inlcuding online classes, tutorials etc) on CUDA is plentiful on 

the Web - so the purpose of this slides is not to present something deep, but 

to hopefully save time for everybody by providing a compressed quick 

overview tailored to the group. If everyone knows all of this already, all the 

better. I'll be quick. 

• I'm not an expert - opinions expressed here are my own, based on a bit of 

tinkering with the Nvidia CUDA IDE and running simple tests. 

• May help form an initial opinion on usefulness of CUDA for the Wirecell 

project. 

• Also to facilitate comparison with OpenACC and other accelerator tools (to 

be done) 

• I'll show a trivial piece of code I wrote for illustration purposes and ran on my 

graphics card, and then briefly explain how it relates to the API which in turn 

relates to GPU architecture. 

 

 

 



What is CUDA? 
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• Wikipedia: CUDA is a parallel computing platform and programming model created by 
NVIDIA and implemented by the graphics processing units (GPUs) that they produce. 
CUDA gives developers direct access to the virtual instruction set and memory of the 
parallel computational elements in CUDA GPUs. 

• You trade the speed of the processor for the sheer number of processors available to 
your application (~103). Individual cores in the GPU are slow compared to a CPU in 
late model PC. According to Wikipedia: "GPUs have a parallel throughput architecture 
that emphasizes executing many concurrent threads slowly, rather than executing a 
single thread very quickly." 

• CUDA SDK was released in 2007 - "somewhat" recently. It was much smaller and 
modest in terms of included functionality (e.g. libraries) compared to contemporary 
releases. 

• Applications (including in physics) followed rather quickly (conference presentations 
in 2009)! 

• Since 2008 supported on Windows, Linux and Mac. 

• Supports a vast number of GPU models produced by NVIDIA. 

• Various types of NVIDIA hardware are not created equal. There are "levels" of CUDA 
support in each generation, meaning either more or less functionality depending on 
the hardware version. 

 

 

 



Use in HEP 
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• Despite quick initial adoption, it took time for this technology to be utilized at scale. 

• Hardware and software underwent rather rapid evolution, resulting in multiple 
versions of both with different functionalities (while retaining a degree of 
compatibility). Not every CUDA version works with hardware version XYZ. 

• Many large and/or important projects were conceived and/or built before CUDA 
reached a degree of maturity and acceptance in the HEP community. 

• Structuring computational problems to fully exploit parallelism is a challenge above 
and beyond just writing good software. A few important software components (cf. 
GEANT4) are older than CUDA and other parallel platforms so provisions for 
parallelism were not an integral part of their design. 

• GPU adoption simply didn’t reach the critical mass that would result in such facilities 
to be built at scale. At the same time, there are supercomputing facilities created for 
other reasons that can be exploited opportunistically. A few of the current and future 
systems are equipped with CUDA-capable GPUs. 

• Finally, a few notable experiment like IceCube and LHCb are in fact utilizing GPUs as 
an integral part of their systems (in differing capacities). 

• It looks increasingly likely that the trend will continue at a faster pace and we don’t 
want to be left behind. 

 

 

 

 



"Device" vs "Host" 
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• In a typical installation, the GPU (often called "the device") resides inside a 
more conventional computing hardware, such as a PC, called "the host". 

• The host itself can be a node inside a supercomputer. 

• Multiple GPUs in a single host are supported: 

• in the PC scenario, this is useful to know since heavy GPU use can interfere with 
primary function of the graphics card which is being a video adaptor, although in 
reality it's the other way around - the driver can kick out computational load from 
GPU if it considers it excessive - all tunable, of course. 

• provides a straightforward way to scale even in a conventional box 

• GPUs don't have an operating system in the conventional sense, so basic 
functions such as memory allocation (also freeing memory and others) are 
hidden behind an API that can be used from code running on the host. 

• Memory is not shared between the host and the device. There is an API 
which allows copying of the data in either direction. Communication happens 
over the bus (e.g. PCIe) and therefore is a lot slower than RAM access. It is 
one of the principal limiting factors for overall performance. 

• Functions that are executed on the GPU are termed "kernel". 

 

 



Elements of CUDA syntax 
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Declaring functions 

• __global__      declares kernel, which is called on host and executed on device 

• __device__     declares device function, which is called and executed on device 

• __host__        declares host function, which is called and executed on host 

• __host__ and __device__ can be combined if the same C (C++) function will need to 
run on both (obviously compiled differently for each target) 

 

Declaring variables 

• __device__   declares device variable in global memory, accessible from all threads, 
with lifetime of application 

• __constant__  declares device variable in constant memory, accessible from all 
threads, with lifetime of application 

• __shared__   declares device varibale in block's shared memory, accessible from all 
threads within a block, with lifetime of block 

 

 

• Most routines return an error code of type cudaError_t.  

 

 



Testbed 
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• I used the graphics card in my home PC (which is high-end but this has no 
bearing on the test). 

• GTX 970 Engine Specs: 

• CUDA Cores:   1664 (128 cores per 13 Multiprocessors) 

• Base Clock (MHz):  1050 

• Streaming Multiprocessors (SMM): 13 (Maxwell class) 

• GTX 970 Memory Specs: 

• Memory Clock:   7.0 Gbps 

• Standard Memory Config:  4GB (subject to debate due to varying 
speed) 

• Memory Interface:   GDDR5 

• Memory Interface Width:  256-bit  

• Memory Bandwidth (GB/sec): 224 (subject to debate) 

• Misc: 

• The card was released last year 

• 148W nominal power compared to 230-250 in previous generation (770, 780) 

• The 970 is a pretty much a crippled 980 (which has 16 SMM and 2048 cores) 

 

 

 



CUDA software 
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• In CUDA, host and device code coexist in a single source file (*.cu) - for the 

developer, it looks like normal C++ with a few additional keywords and 

decorations (for those who use those in Python). 

• On any platform, "nvcc" compiler is used to compile the code, and it in turn 

calls the native host compiler (e.g. gcc on Linux or Visual C++ compiler on 

Windows) to create runtime binaries. 

• You will notice longer compilation times compared to plain vanilla case. 

• Quote: "The CUDA development environment relies on tight integration with 

the host development environment"... (cf. C libraries etc). 

• Using an IDE: the only straightforward way to use CUDA on Windows is via 

a kit that works with a specific version of Visual Studio. On Linux there is an 

option to integrate with Eclipse, but integration with an IDE is not mandatory 

– you can compile and run from the command line. 

 

 

 



A trivial test of CUDA (1) 
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• There is a plethora of CUDA tutorials, examples and tests, lots of them covering 
problems in multiple dimensions. In addition to a few test I ran and tweaked, I decided 
to write something very simple from scratch to gain initial experience before moving to 
N-dimensional code. One dimension seemed easy enough, and I chose to implement 
a dot product routine - if the vectors being multiplied are very long, it is beneficial to 
split the procedure in multiple threads each iterating over a slice of the vectors. 

• Used random numbers but switched to same value for vector components for ease of 
debugging (fill them with same number). 

• In no way should it be considered a GPU performance test or a benchmark as it is not 
designed for this (as we will see). Scaling with thread count will be measured, though. 

• Kernel is a function that will run on the GPU, in this test there are two: 

__global__ void threadedDotProduct(int load, int *inp1, int *inp2, int *interim) { 
 int index = blockIdx.x*blockDim.x + threadIdx.x; // this is the global thread index 
 for (int i = 0; i < load; i++) interim[index] += inp1[index + i] * inp2[index + i]; 
} 

__global__ void summation(int *array, int N) { 
 int sum = 0; 
 for (int i = 0; i < N; i++) sum += array[i]; 
 array[0] = sum;} 



A trivial test of CUDA (2) 
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• Running the kernel - looking in the host code. "Load" is simply an integer specifying 

the length of the portion of the vector to be processed in one thread, "device arrays" 

are vectors being multiplied, "interim array" contains partial sums to be combined later. 

• first compute partial dot-product of two vectors in b*t threads... watch for the triple chevron! 

 threadedDotProduct<<<b,t>>>(load, device_array_1, device_array_2, interim_array);  

• then aggregate partial sums into the final scalar in a single thread 

 summation<<<1,1>>> (interim_array, num_inter); 

• Memory allocation/deallocation on the device: 

int *device_array_1 = 0; 

cudaMalloc((void**) &device_array_1, num_bytes); 

cudaFree(device_array_1); 

 

Thread1Σ Thread2 Σ Thread3 Σ Thread4 Σ ThreadN Σ 

Vector Elements 

Threaded dot Product 

Aggregated sum 

... 



(Unscientific) 

Scale test 1 
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• Test case - a vector of 

1M (10242) integers 

• Keep 1 block of 

threads and vary their 

number 

• Use built-in event timer 

in CUDA to measure 

execution time 

• Under these 

conditions, we observe 

an almost linear with 

respect to the number of 

threads speed-up due to 

parallel execution. 



Scale test 2 
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• Keep total number of 

threads constant but 

vary the number of 

thread blocks. 

• We observe nearly 

constant execution time. 

Something is being 

obviously done in 

parallel! 



Scale test 3 

13 

 

 

 

 

 

• Now contunue to raise 

the number of threads 

from 16 to 512, linear (or 

almost linear) increase 

of speed continues. 



Scale test 4 

14 

 

 

 

 

 

• Finally, with 2 to 4 

thousand threads, we 

see saturation and then 

deterioration of 

performance. 

• This is to be expected, 

since the thread load 

becomes very short 

while overhead grows 

(we also do final 

summation in a single 

thread). 

• Total number of 

threads seem to matter 

the most, tried same 

with varying number of 

blocks. 

PS. Same operation takes 9ms on a typical RACF interactive node 



More on blocks and threads 
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• Why blocks? A block of threads is assigned to a single multiprocessing unit (SMM) 

within the GPU, so grouping threads like this allows better management of GPU 

workload. There will be queing of threads in the GPU. 

• All threads in a block will run the same kernel. 

• In the example considered so far, we used a scalar object (number) for blocks and 

same for threads:  blah<<<b,t>>>(foo); 

• This, however, is just a limiting case. Blocks can form a 2D grid, and each block can 

handle a 3D array of threads . This is achieved transparently (more or less) for the 

user by declaring and defining "b" and "t" accordingly. 

• Blocks in the grid must have same size and cannot be resized at runtime. 

• Why do people need more than one dimension in these data structures? That is 

because the challenge in this type of computing is optimal distribution of workload over 

threads, and it assumes segmentation of data which must be mapped to threads 

accordingly. Example: when solving a 3D problem, it will be often optimal to map 

portions of the 3D volume being processed to a 3D space of threads to exploit the 

data layout in a way that leads to computational parallelism. 

• OTOH comment - some problems just beg to be solved on such grid, cf. Poisson 

equation. 



An illustration 
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Cheat sheet 

17 

• Computing thread indices in multidimensional cases is prone to human error and can be confusing 

• Thread indexing "cheat sheet" can be found (in particular) at http://www.martinpeniak.com/. Examples: 

1D grid of 1D blocks 

__device__ 

int getGlobalIdx_1D_1D() {return blockIdx.x *blockDim.x + threadIdx.x;} 

 

1D grid of 2D blocks 

__device__ 

int getGlobalIdx_1D_2D() {return blockIdx.x * blockDim.x * blockDim.y+ threadIdx.y * blockDim.x + 
threadIdx.x;} 

.... 

2D grid of 3D blocks 

__device__ 

int getGlobalIdx_2D_3D() { 

int blockId = blockIdx.x + blockIdx.y * gridDim.x; 

int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z) 

+ (threadIdx.z * (blockDim.x * blockDim.y)) 

+ (threadIdx.y * blockDim.x) + threadIdx.x; 

return threadId; 

} 



Host-device transfer considerations 
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• Host memory allocation - standard "malloc" will allocate memory which is pageable, 

which is not suitable for transfer to the device - it must be locked. This leads to an 

additional copy operation from pageable to "pinned" (locked) memory and a 

performance penalty. Up to a factor of ~2 difference. 

• Actual speed will still depend on hardware. 

• This can be avoided using specialized memory allocation function calls included in 

CUDA libraries: cudaMallocHost() etc. 

• Use with caution - this will reduce available system memory. 

 

 



Quick notes on memory access 
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• Since host-to-device communications are a critical bottleneck, it pays to deploy 

functions which don’t necessarily need parallelism on the device if they use device-

resident data in some processing step, instead of copying it back and forth. 

• "Global" memory resides in the GPU DRAM, and it can be accessed and modified 

from both the host and the device (e.g. during transfers) 

• Global memory can be declared in global (variable) scope using the __device__ 

declaration specifier as in the first line of the following code snippet, or dynamically 

allocated using cudaMalloc(). 

• Arrays allocated in device memory are aligned to 256-byte memory segments by the 

CUDA driver. 

• Misaligned access to memory will result in performance penalty (which can be severe 

sometimes). 



Summary 
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• For many of us this is the first real encounter with GPUs. It does not mean that we 

won't consider Xeon and other available parallel computing platforms. 

• With CUDA, the barrier to entry into massively parallel computing is extremely low  

since NVIDIA GPUs are very common and for the most part inexpensive. This is a big 

plus. Oftentimes even laptops are equipped with CUDA-capable GPUs. CUDA 

software is readily available and a large knowledge base exists in the developer 

community and documentation provided by NVIDIA. 

• Apparently despite this platform being rather complex, the initial learning curve is not 

too steep (another big plus) and is conducive to experimentation and creativity in 

general. 

• There is a selection of useful libraries provided with CUDA, which were not discussed 

in this presentation. This means that useful results can be achieved quickly and 

without low-level programming for some popular classes of problems (FFT, matrix 

manipulation etc). 

• In addition to consumer or business-grade GPUs installed in workstations and laptops, 

there are supercomputing installations where CUDA technology is applied (cf. TITAN 

at Oak Ridge and some other Leadership Class Facilities). That indicates potential for 

running parallelized DUNE software on such platforms (with DOE's blessing). 



Plans 
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• It may be a good idea to explore a few approaches to the current Wirecell framework 

from the standpoint of parallel architectures. Optimization problems can be solved 

numerically in different ways, and some of these methods may benefit more than 

others from deployment on GPUs. This needs to be understood. 

• Should we look at fully 3D event model? 

 


