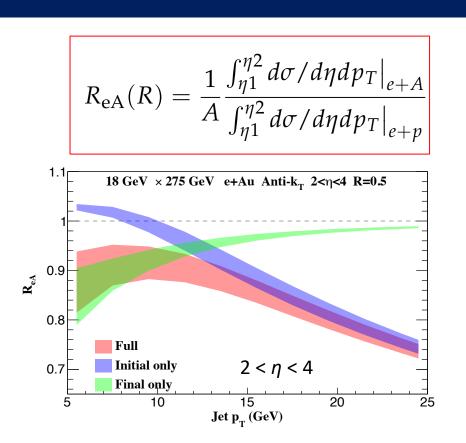
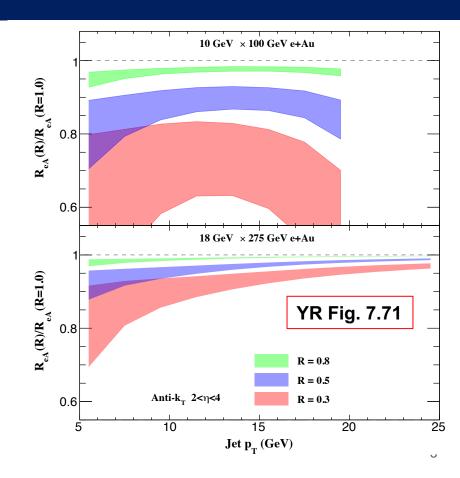

Jet Measurements at ECCE

May 25th, 2021

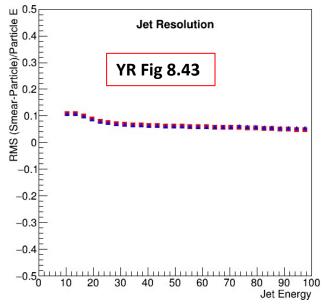
Rosi Reed




Yellow Report "Top Priority" Jet Observables (1/2)

- Dihadron azimuthal angle correlation in e+Au and e + p collisions
- Linked to saturation physics
- Propose to do jet-hadron correlations instead
 - Jets have better correlation with parton kinematics
 - Jet resolution is better than tracking resolution

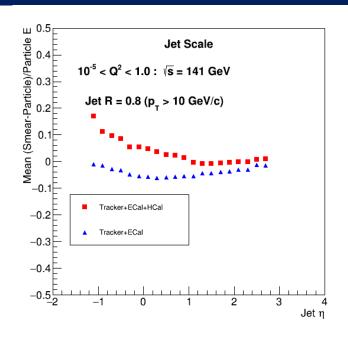
Yellow Report "Top Priority" Jet Observables (2/2)

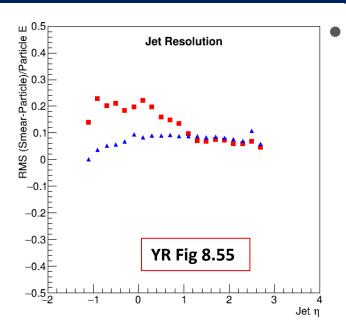


Jet Performance Plots

 For supporting documentation we will need to generate Jet Energy Scale (JES) and Resolution (JER)

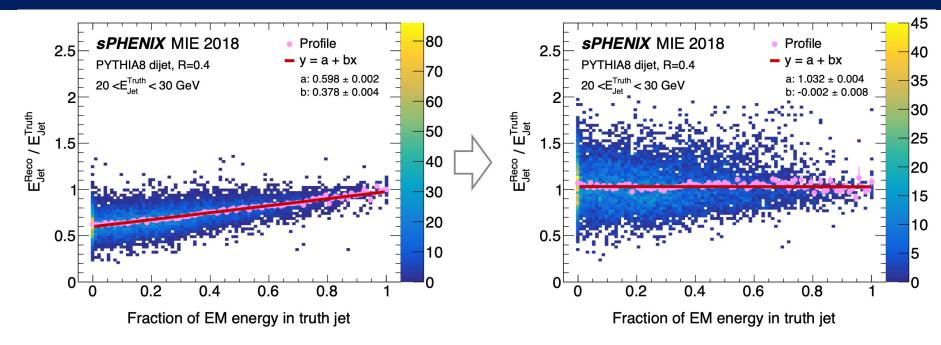
· 100010.11011 (0=11)				
U 0.5 D Jet Scale				
Jet Scale 0.4 100 < Q² < 1000 GeV² : √s = 141 GeV 0.3 Jet R = 0.8 (p _T > 10 GeV/c) 0.1 0.1 0.1 0.1				
Jet R = 0.8 (p _T > 10 GeV/c)				
(Smean 1				
W -0.1				
-0.2				
-0.3 ■ 3T Res 3T Thresholds				
-0.4 1.5T Res 3T Thresholds				
-0.5 0 10 20 30 40 50 60 70 80 90 100 Jet Energy				


Pseudorapidity Range	Handbook (σP/P%)	3 T (σP/P%)	1.5 T (σP/P%)
$-3.5 < \eta < -2.5$	$0.1\%*P \oplus 2\%$	$0.1\%*P\oplus2\%$	0.2% * P ⊕ 5%
$-2.5 < \eta < -1.0$	$0.05\%*P\oplus 1\%$	$0.02\%*P\oplus 1\%$	$0.04\%*P\oplus2\%$
$-1.0 < \eta < 1.0$	$0.05\%*P\oplus0.5\%$	$0.02\%*P\oplus0.5\%$	$0.04\%*P\oplus 1\%$
$1.0 < \eta < 2.5$	$0.05\%*P\oplus 1\%$	$0.02\%*P\oplus 1\%$	$0.04\%*P\oplus2\%$
$2.5 < \eta < 3.5$	$0.1\%*P \oplus 2.0\%$	$0.1\%*P\oplus2\%$	$0.2\%*P\oplus 5\%$



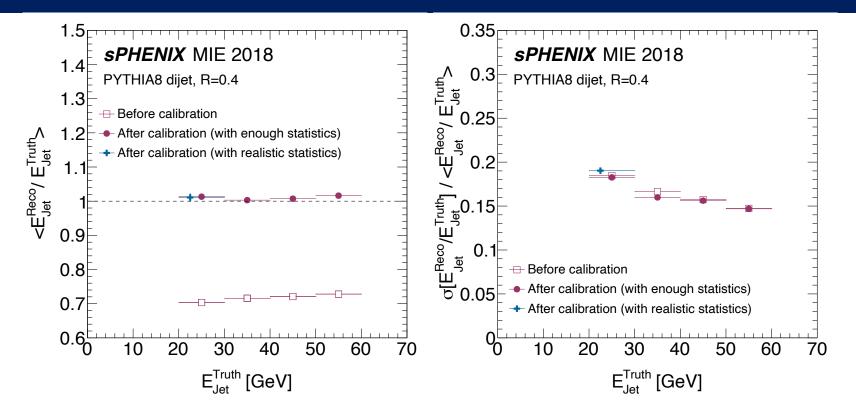
For the YR the JES was calculated as the mean of the smeared jet energy minus the true jet energy divided by the true jet energy

JER is the RMS.


Calorimeter Performance?

- Matching on this plot was from Reco→Truth (compared to the previous)
 - Due to low energy
 hadrons which
 fluctuated to much
 higher energy in the
 Hcal due to
 resolution
- Reading the YR it is not clear what calorimeter calibration was done prior to the jet finding

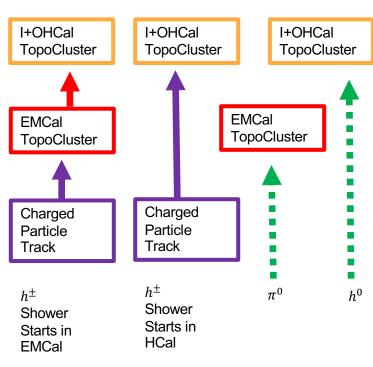
Calibration of Jet Energy Scale

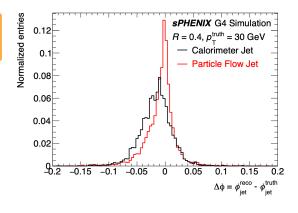


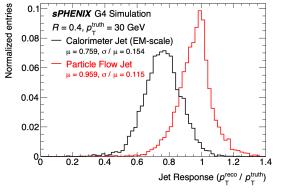
EMCal Calibration done using γ-jet events

$$E_{\text{let}}^{\text{reco}} = E_{\text{EMCal}}^{\text{em}} + A(E) \cdot E_{\text{EMCal}}^{\text{had}} + B(E) \cdot E_{\text{HCal}}$$

A and B are chosen to minimize the difference between E_{γ} and E_{iet}


sPHENIX Calormieter Jet performance


Improvement to JES helpful for unfolding


sPHENIX Particle Flow

- Implementation of particle-flow jet reconstruction using "best of" techniques from ATLAS/CMS
 - Charged particle tracking important for jet physics
 - Significant improvement in angular resolution and p_T response possible
- Particle-flow jets will enable the measurement of jet sub-structure observables

D. Perepelitsa HP2020

Conclusions

- Jet evaluators within fun4all are quite mature (jets are a key component of the sPHENIX physics program)
- A version of the PF algorithm is in fun4all already
 - I do not know how this will perform outside of mid-rapity
 - Will need further calibration as detectors change
 - This is most likely beyond the scope of the proposal, but could be useful
- Start with making JES/JER plots as in the YR for central, backward, forward jets
 - Check if PF gains us the ability to have track+EM+Hcal jets
- Remake dihedron correlation plot and nuclear modification plots