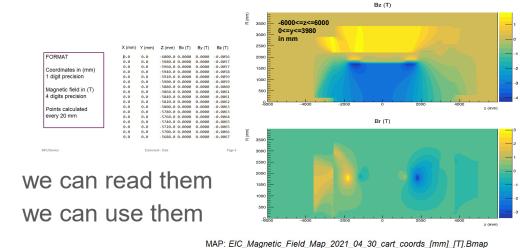
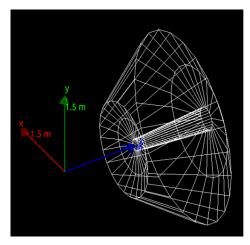
First look at IP6 field maps with a simple Geant4 model


Chandradoy Chatterjee Roberto Preghenella

Outline


- 1. The field map and Geant4 based RICH geometry
- 2. The effect of the field on the tracks inside the RICH volume.
- 3. Conclusion.

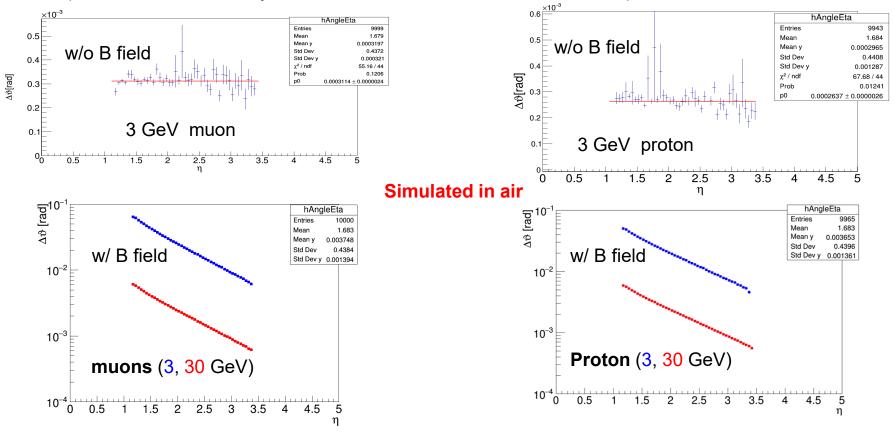
IP6 field maps

The magnet is being designed **NOW**; Goal of the exercise: Able to provide in semirealtime a feedback concerning the impact on gaseous RICH performance of the proposed designs

The Geant4 model

The Geant4 model used in this exercise everything is air(vacuum)

- world volume
 - box
 - half length (x, y, z) = (4, 4, 6) m


magnetic field volume

- cylinder
- radius = 4 m, half length = 6 m 0
- B field is read from the IP6 map 0
- radiator volume
 - 0 section of a spherical shell
 - inner radius = 1.5 m, outer radius = 3.0 m 0
 - theta min = atan2(0.1, 1.5), theta max = atan2(2.0, 3.0); 0
 - full azimuth 0
 - B field in this volume is read from IP6 map (can be switch off on demand) 0
 - simulation and analysis strategy
 - fire particles from the IP at (x, y, z) = (0, 0, 0) with different (p, eta, phi) kinematics and PID 0
 - transport them in the geometry (bending in B field, multiple scattering in air, ...) 0
 - record the track information at the entrance and exit of the radiator volume 0
 - measure the angular deviation of the track from entrance to exit of radiator (i.e. cosine between the direction vectors) 0

A similar structure as dRICH

The effect of the field on the tracks inside the RICH volume.

The plots are for consistency check! Air as radiator and below threshold particles are also considered.

4

Conclusion

- 1. Work program is initiated to simulate the forward RICH for IP6 detector.
- 2. The effect of the magnetic field on the track is under investigation inside the RICH volume.
- 3. Work is ongoing to include available full dRICH simulation and study the effect of magnetic field in terms of separation as a function of momentum.