

Low momentum PID at High B-field ("Mostly Silicon" Tracker with a PID layer)

- GridPix is a 55 μ m × 55 μ m pixel readout for a gaseous TPC
- First Timepix3 based GridPix test beam (2017)
- Quad module performance from test beam (2018)
- Investigations of the 8 quad detector (2020)

TK Hemmick, K Dehmelt, (SBU) N Smirnov, (Yale) J Kaminski (Bonn) S Park (SBU)

P Garg (SBU)

Low Momentum PID

- High magnetic field curls low(er) momentum particles.
 - Option #1: We don't care about them. (bad option)
 - Option #2: Lower the B-field for "special runs". (poor option)
 - Option #3: PID on these particles BEFORE they curl up.

Pads

Mostly All-Si Tracker

GridPIX Overview

- Ultimate dE/dx device.
 - Avalanche grid in front of 55 x 55 μ m² pixels.
 - >90% efficiency for single electrons (Polya NOT exponential).
 - ► Goal:
 - Enough diffusion to get every electron into a different hole.
 - Count electrons one-by-one.
 - Three generations of development and continuing.

Large area is VERY expensive, but this proposal is small area.

Careful: ~3kW of power must be removed.

3D e-by-e tracking

Observed standard deviation	41 µm
Statistical errors	25 µm
Systematic errors in the pixel plane and drift direction	19 µm
Multiple scattering	22 µm
Unidentified systematic error	14 µm

Pros:

- Known/Proven Technology
- Active further development (Bonn) dE
- Best $\frac{d}{dx}$ possible (~count each electron)
- Affordable for a small area
- High resolution tracking
 - Also loves outer MPGDs!
- Low mass in electron arm
- Continuous (aka streaming) readout

Cons:

- 3 kW of power.
- Must find a low pass way to handle.
- Services "bulky" (compared to just Si)
 - Gas
 - HV membrane
 - Cooling
 - DC power lines (3kV goes in too)

A Little Geometry

collaboration

			111100103 (2013)	111100174 (2013)	
Technology			130nm – 8 metal	65nm – 10 metal	
Pixel Size			55 x 55 μm	55 x 55 μm	
Pixel arrangement			 ③ 3-side buttable 256 x 256 	4-side buttable 512 x 448 3.5x	
Sensitive area			1.98 cm ²	6.94 cm²	
Readout Modes	Data driven (Tracking)	Mode	TOT and TOA		
		Event Packet	48-bit	64-bit 33%	
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s	
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel	
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)	
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)	
		Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10 ⁹ hits/mm²/s 5x	
TOT energy resolution		ion	< 2KeV	< 1Kev 2x	
TOA binning resolution		tion	1.56ns	195ps 8x	
TOA dynamic range			409.6 μs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 40MHz) 4x	
Readout bandwidth		า	≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gb <mark>≩2</mark> X	
Target global minimum threshold		num threshold	<500 e ⁻	<500 e ⁻	

Timepix3 \rightarrow Timepix4

Timeniv/ (2010)

Timeniv3 (2013)

- 55 $\mu m \times 256 = 1.4 \ cm$ active area.
- 100cm/1.4cm = 71.4....call it 72 chips x 72 chips (but must eliminate holes)

Rough number of actual chips: $\frac{\pi(50^2 - 25^2)}{1.4^2} = 3,005 \ chips$ $\frac{\pi(50^2 - 20^2)}{1.4^2} = 3,366 \ chips$

https://indico.cern.ch/event/581417/contributions/2522462/attachments/1465797/2265982/GridPix_TP3.pdf

TimePIX4 is more Promising for EIC

avier.llopart@cern.ch

2nd MUonE Collaboration Meeting at CERN

6 xavier.llopart@cern.ch

2nd MUonE Collaboration Meeting at CERN

- Model 4 replaces wires bond with bump bond (improves active area).
- > 93.7% → 99.5% active area.
- DAQ interface by Through-Silicon-Vias (TSV).

-0.5

Less than 1 GeV/c

log₁₀(p)

- Parallel Efforts
 - Standalone and GEANT made correct