
sPHENIX plans
Coordinated Analysis

Analysis Organization

• To first order more a sociological than a technical problem
• “Easy solutions” will always win, users vote with their feet
• Sticks don’t work, there has to be a tangible benefit for users to get on board

• PHENIX evolution
Internal data structure to access objects implemented from the beginning
2000/2001 Reconstruction and Analysis written in CINT macros

• “fast” development but impossible to debug
• 1000 line spaghetti

2002 Moved to compile only
• Finally could use a debugger
• Everything hardcoded – no flexibility
• 1000 line spaghetti

2003+ Fun4All
• Reco/Analysis Chain Configurable with CINT macros
• Baseclass to interface to “code which does something”

Pain
Level

Keep it simple – The only class a user ever needs

• Init(PHCompositeNode *topNode) : called once when you register the
module with the Fun4AllServer

• InitRun(PHCompositeNode *topNode) : called before the first event is
analyzed and whenever data from a new run is encountered

• process_event (PHCompositeNode *topNode) : called for every event

• ResetEvent(PHCompositeNode *topNode) : called after each event is
processed so you can clean up leftovers of this event in your code

• EndRun(const int runnumber) : called before the InitRun is called (caveat
the Node tree already contains the data from the first event of the new run)

• End(PHCompositeNode *topNode) : Last call before we quit

What we tell users: You need to inherit from the SubsysReco Baseclass

(offline/framework/fun4all/SubsysReco.h) which gives the methods which are called by Fun4All. If

you don’t implement all of them it’s perfectly fine (the beauty of base classes)

I haven’t seen an example yet where this is not sufficient

The Battle for the Analysis Chain

• PHENIX makes a persistent copy of the node tree
• This DST is a snapshot of the state of the analysis/reconstruction chain

• Node Tree structure reflected in horribly not CINT parsable TBranch names

• It is not easily T.Draw()’able (remember “easy”?)

• Run2Tree (2002)
• Dumps DST content into a simple TTree for “easy” analysis

• Came with its own “analysis framework”

“Easy” doesn’t cut it this time – let’s go for tangible benefit

The tangible benefits

• Recalibrators
• No persistent output is ever final, calibrations need to be applied

• Added recalibration feature (with DB backend and automatic selection of needed
calibrations)

• Added by one line in the steering macro (remember “easy”)

• Reading files in parallel and synchronizing the content
• We started splitting our output into calorimeter and tracking data and into

central arm and muon arm data and separating triggers
• Also small subsets of separate hits files for embedding studies
• Fun Fact – that is the precursor of the sPHENIX offline event builder

• Root TTrees from Run2Tree by themselves neatly mix your events without
telling you

Now all PHENIX analysis code derives from the common base class
That code typically writes Ttrees, ntuples, histograms for easy analysis

Brief History of the Analysis Train/Taxi
• 2004: First incarnation - DST’s did not fit on central disk storage

• Tried subset on disk and replace occasionally, not much space left for users
• Organized fetching of files from hpss and process locally (freeing up central disk

space), use common interface to call user code and call this analysis train

• Late 2004: dCache – giving access to previously unused disk space on
compute nodes with enough space to keep DSTs
• Network now bottle neck (fast ethernet – 100Mb/s)
• Weekly runs for as many modules as were signed up

• 2012: making use of 1Gb/s connectivity
• Switched to on demand submission for single users → Analysis Taxi (“easy”)

• Simultaneous requests for the same dataset still get combined
• Local disk i/o now limiting factor – redesign DSTs to trade off space for cpu

• 2023: sPHENIX Probably starting with tape again

No user interface was changed, all datasets since 2003 are available for Analysis

Analysi taxi Schematics

• Fully automatized

• Modules running over same

dataset are combined to save

resources

• Provides immediate access to all

PHENIX datasets since Run3

• Turnaround time typically hours

• Vastly improves PHENIX

analysis productivity

• Relieves users from managing

thousands of condor jobs

• Keeps records for analysis “paper

trail”

Output

gpfs

15000 condor slots

@rcf

8PB dCache system

All datasets since Run3

available online

User Input:

library source

root macro

output directory

Web signup

GateKeeper:

Compilation

Tagging

Verification

Signup (easy for them) and Monitoring (easy for us)

408 datasets

17498 analysis modules run since inception in 2004

The tangible benefits

• Easy
• Users do not have to deal with computing infra structure

• Latest calibrations are applied automatically

• Code testing (somewhat hated)

• Fun fact – our smallest dataset is 4 files, users found this more convenient
than running their own jobs

• Easy for us
• Running centrally allows us to run things you would not hand to users

• By now this runs completely on auto pilot

All users have access to the same data – no private data formats

sPHENIX

• Small number of datasets
• AuAu MB datasets

• Probably specialized sets with e.g. photon jets, upsilons

• Trigger separated pp and pAu datasets

• Much larger datasets
• Multi PB sized (90% reduction of 200PB raw data still 20PB)

• PHENIX→ 400TB (processed in 24 hours)

We will use the taxi idea – not the code. It’s going to be an interesting challenge

