Summary of EIC Yellow Report Inclusive Group Studies

https://arxiv.org/abs/2103.05419

Barak Schmookler

1

Contributions from the Inclusive Group

7	The	e EIC	Measurements and Studies	10
	7.1	Glo	bal properties and parton structure of hadrons	10
		7.1.1	Unpolarized parton structure of the proton and neutron	10
		7.1.2	2 Spin structure of the proton and neutron	17
			Neutron spin structure from inclusive and tagged DIS with polarized ³ He and ² H	20
1		7.1.3	3 Parton structure of mesons	27
			Introduction	27
			Sullivan Process	29
			Theoretical Backgrounds in Extracting the Data	30
	7.3	The N	ucleus: A Laboratory for QCD	
		7.3.1	High parton densities and saturation 79	
		7.3.2	Diffraction	
		7.3.3	Nuclear PDFs	
			nPDFs via inclusive DIS	
			Probing nuclear gluons with heavy flavor production	
		7.3.4	Particle propagation through matter and transport properties of nuclei 90	
			Parton showers and energy loss in cold nuclear matter 90	
			Formation of hadrons in matter	
			Jet production and modification in <i>eA</i> collisions 91	

7.1.5	Mu	llti-parton correlations	7
	Intr	roduction	7
	$g_T^a($	(x) from inclusive DIS	9
	<i>e^a</i> (:	x) from semi-inclusive DIS	9
7.1.6	Incl	lusive and hard diffraction	1
	Incl	lusive diffraction	1
	Diff	fractive dijets	5
	Lar	$e_{\text{ge}} t$ diffractive production of vector mesons $\ldots \ldots \ldots \ldots 4$	6
7.1.7	Glo	bal event shapes and the strong coupling constant 4	8
7.5	Conne	ections with Other Fields	
	7.5.1	Electro-weak and BSM physics	
		Introduction	
		Weak Neutral Current Measurements	
		Charged Lepton Flavor Violation	
		Charged Current Chiral Structure	
		Heavy Photon and Neutral-Lepton Searches	
		General BSM Searches	

Inclusive Physics of Interest

Measurement	Main Detector Requirements	Anticipated Plot	Physics Topic/goal	Responsible persons
inclusive $A_{ } / A_{\perp}$ for proton, deuterium, ³ He	Standard inclusive	$\begin{array}{c} {\sf A}_{ }({\sf x},{\sf y},{\sf Q}^2),{\sf A}_{\perp} \\ {\sf g}_1({\sf x}),{\sf g}_{2/{\sf T}}({\sf x}){\sf vs}{\sf Q}^2 \\ {\sf \Delta}{\sf g}({\sf Q}^2){\sf vs}{\sf x} \end{array}$	Gluon & Quark Helicity Δg(x,Q²), Δu+, Δd+	
inclusive A _{PV}	Standard inclusive	$\begin{array}{l} A_{PV} \text{ vs x for } W^{+/\text{-}} \\ g^{W}{}_{5}(x) \text{ vs } Q^{2} \\ \Delta s^{+}(Q^{2}), s^{+}(Q^{2}) \text{ vs x} \end{array}$	Strange Pol and Unpolarized Δs ⁺ (x,Q ²), s ⁺ (x,Q ²)	
$\sigma_{red}(x,Q^2), \sigma^{c/b}_{red}(x,Q^2) \rightarrow F_2, F_L, F_2^{c/b}$	Standard inclusive + heavy quark tag		Proton PDFs q(x,Q ²) , g(x, Q ²)	
$\sigma_{red}(x,Q^2), \sigma^{c/b}_{red}(x,Q^2) \rightarrow F_2, F_L, F_2^{c/b}$	Standard inclusive + heavy quark tag		Nuclear PDFs q(x,Q ²) , g(x, Q ²)	
$\sigma_{red}(x,Q^2), \sigma^{c/b}_{red}(x,Q^2) \rightarrow F_2, F_L, F_2^{c/b}$	Standard inclusive + heavy quark tag		Non-linear QCD dynamics	
EW inclusive A _{PV}	Standard inclusive	$A_{PV}(y) vs Q^2$ $sin^2 \Theta_w vs Q^2$	BSM & Precision EW (sin ² θ _w)	
Triply differential NC X-sec	Standard inclusive	Updated Fig.6 in <i>PhysRevD.98.115018</i> for CM energies smearing.	Lorentz and CPT Violating Effects	

Detector requirements from the Inclusive Group

8	Det	ector R	equirements	169
	8.1	Inclus	ive Measurements	169
		8.1.1	Reconstruction of kinematic variables	169
		8.1.2	Kinematic phase space	171
		8.1.3	Electron Acceptance and Particle Identification	172
		8.1.4	Resolution and bin migration effects in electron reconstruction	177
		8.1.5	Acceptance, resolution, and bin migration effects in Jacquet-Blondel reconstruction	179
		8.1.6	Generator Verification	180
			Systematic Uncertainties for the Inclusive Pseudo-data	183
	8.2	Semi-	Inclusive Measurements	185
		8.2.1	General SIDIS kinematics and requirements	185
		8.2.2	Hadron PID impact on 4D TMD measurements	187

N.C. Kinematic Phase Space and Yields

Scattered Electron Kinematics

Scattered Electron Kinematics

$$Q^{2} = 4EE'\cos^{2}\left(\frac{\theta_{p}^{e'}}{2}\right)$$
$$y = 1 - \frac{E'(1 - \cos\theta_{p}^{e'})}{2E}$$

$$x = \frac{Q^2}{sy}$$

5/24/2021

Scattered Electron Kinematics and Yields

Scattered Electron Kinematics and Yields

Electron Momentum Acceptance

 $Q^2 > 1 \text{ GeV}^2$ and y < 0.95 constraints applied

_		_	
E_{beam}^{e} (GeV)	η bin	$p_{min}^{e^-}$ (GeV)	
18	(-3.5,-2)	0.9	
18	(-2,-1)	0.9	
18	(-1, 0)	1.0	
18	(0, 1)	1.8	
10	(-3.5,-2)	1.4	
10	(-2,-1)	0.5	
10	(-1, 0)	0.6	
10	(0, 1)	1.0	
5	(-3.5,-2)	2.8	
5	(-2,-1)	0.4	
5	(-1, 0)	0.3	
5	(0, 1)	0.5	

Scattered Electron Background

1

10 momentum (GeV) 10-1

1

10 momentum (GeV)

10 momentum (GeV) 10-1

5/24/2021

10-1

1

Estimated π/e Ratios

$E_{beam}^{e^-}$ (GeV)	η bin	$p_{min}^{e^-}$ (GeV)	Max π^-/e^-	final π^-/e^- ratio
18	(-3.5,-2)	0.9	200	0.02
18	(-2,-1)	0.9	800	0.08
18	(-1,0)	1.0	1000	0.1
18	(0, 1)	1.8	100	0.01
10	(-3.5,-2)	1.4	10	0.001
10	(-2,-1)	0.5	400	0.04
10	(-1,0)	0.6	800	0.08
10	(0, 1)	1.0	1000	0.1
5	(-3.5,-2)	2.8	0.1	0.00001
5	(-2,-1)	0.4	100	0.01
5	(-1,0)	0.3	500	0.05
5	(0, 1)	0.5	1000	0.1

Pion contamination

- Inflates statistical errors because it is typically treated as a dilution
- 2) Incurs ~1% systematic error

Tightest constraints come from electron parity violating asymmetries A_{PV}^{e-}

Requirement on final π/e Contamination

- Limit pion contamination systematic error to be ~10% of statistical error.
- Translates into a requirement of pi/e = 1x10⁻³
- 3) This requirement is never met in the central region (-2 < η < 1)
- Room for improvement with implementation of PID algorithms.

Estimated uncertainties for N.C. Cross sections

C.C. Phase Space and Reconstruction

Hadronic Reconstruction

$$Q_{JB}^2 = \frac{p_T^2}{1 - y_{JB}} \left[p_T^2 = (\sum_h P_h^x)^2 + (\sum_h P_h^y)^2 \right]$$

$$y_{JB} = \frac{(E-p^z)}{2E} \qquad (E-p^z) = \sum_h (E_h - p_h^z)$$

$$x_{JB} = \frac{Q_{JB}^2}{sy_{JB}}$$

5/24/2021

Hadronic Reconstruction

10

η

But increasing acceptance to η = +4 seems to have minimal impact on the kinematic reconstruction resolutions

J.B. reconstruction requires inelasticity > 0.01 cut

 $\Delta x/x$ and $\Delta y/y$ diverge as $y \rightarrow 0$

 $\Delta x/x$ develops systematic offset at x ~10⁻².

Caused by large positive fluctuations in y that then suppress x.

J.B. reconstruction requires inelasticity > 0.01 cut

 $\Delta x/x$ and $\Delta y/y$ diverge as $y \rightarrow 0$

 $\Delta x/x$ develops systematic offset at x ~10⁻².

Caused by large positive fluctuations in y that then suppress x.

Removed by y > 0.01 cut

Limitations in the Yellow Report – no 'full' analysis of physics observables was completed

- In the yellow report, the focus was on considering the event rates, acceptance and resolution, and raw backgrounds
- We did not complete a full analysis of the physics observables. This was because of several reasons:
 - 1. Since we were not working with a full detector simulation at the time, we did not have realistic particle ID cuts, efficiencies and background estimates
 - 2. We did not a detector material budget to accurately estimate external conversion backgrounds
 - 3. Realistic beam effects such as crossing angle and divergence had not been implemented
- In addition, our goal in the yellow report was to determine how accurately the inclusive measurements needed to be made. This meant studying the impact of different systematic uncertainty scenarios with the fitting groups. Much of this could be done by using the systematic uncertainties determined by previous experiments.

Limitations in the Yellow Report – raw backgrounds did not include realistic topological cuts

$E_{beam}^{e^-}$ (GeV)	η bin	$p_{min}^{e^-}$ (GeV)	Max π^-/e^-	final π^-/e^- ratio
18	(-3.5,-2)	0.9	200	0.02
18	(-2,-1)	0.9	800	0.08
18	(-1,0)	1.0	1000	0.1
18	(0, 1)	1.8	100	0.01
10	(-3.5,-2)	1.4	10	0.001
10	(-2,-1)	0.5	400	0.04
10	(-1,0)	0.6	800	0.08
10	(0, 1)	1.0	1000	0.1
5	(-3.5,-2)	2.8	0.1	0.00001
5	(-2,-1)	0.4	100	0.01
5	(-1,0)	0.3	500	0.05
5	(0, 1)	0.5	1000	0.1

Pion contamination

- Inflates statistical errors because it is typically treated as a dilution
- 2) Incurs ~1% systematic error

Tightest constraints come from electron parity violating asymmetries A_{PV}^{e-}

Start by using *Pythia6* to generate events all the way down to the minimum possible Q²

10 GeV e on 100 GeV p

10 GeV e on 100 GeV p

Start by using *Pythia6* to generate events all the way down to the minimum possible Q²

10 GeV e on 100 GeV p

10 GeV e on 100 GeV p

Start by using *Pythia6* to generate events all the way down to the minimum possible Q²

10 GeV e on 100 GeV p

10 GeV e on 100 GeV p

I estimate that events with W< 2 GeV are ~5% of the total cross section. So, ignoring those events is a small effect.

Also show (purple curve) how much pion contamination will be present if the EIC has 10⁴ level suppression

5/24/2021

25

5/24/2021

Focus on the backward hemisphere with finer bins

5/24/2021

Focus on the backward hemisphere with finer bins

The strictest requirement comes from A_{pv}. Here, the fractional uncertainty on the asymmetry is equal to the final pion contamination. That is, in order to achieve a 1% uncertainty on the asymmetry, we would need a final pi/e ratio of better than 10⁻². As can be seen, for the more central rapidities, this requirement is not met with 10⁴ level suppression.

Look at potential 'topological' variables to reduce pion contamination

- 1. Sum the momenta vectors of all particles except the electron candidate with $|\eta| < 3.5$. Compare the azimuthal angle of that sum to the azimuthal angle of the electron candidate (which is either a negative pion or the scattered electron). The idea is that for the reaction $e + p -> e^{+} X$, the X should be coplanar to the scattered electron, but not necessarily the pion.
- 2. Sum the total energy minus the z-component of the momentum for all particles with $|\eta| < 3.5$. If all particles are detected

 $E_{Tot} - p_{z,Tot} = (E_e + E_p) - (-E_e + E_p) = 2E_e$

For very low Q² events, the scattered electron will be lost down the beamline, and the above quantity will be smaller than $2E_e$. These events may contain a (or multiple) negative pion – which is a scattered electron candidate. We can possibly remove these events by a cut on the above variable. The pion background is reduced by about a factor of 20 without reducing the scattered electron signal above the minimum momentum value

-1.0 < η < 0.0

-1.0 < η < 0.0

The pion background is reduced by about a factor of 20 without reducing the scattered electron signal above the minimum momentum value

 $0.0 < \eta < 1.0$

 $0.0 < \eta < 1.0$

Summary

- ➤I have provided a summary of the work done by the EIC yellow report inclusive reactions group. I have focused on chapter 8, which details the requirements.
- Chapter 7 focuses on the physics impacts for various systematic uncertainty scenarios.
- I also discussed some of limitations in the yellow report effort and the reasons for the approach taken, and some paths forward.