# Inclusive DIS Variable Reconstruction at ep Colliders: some thoughts based on HERA

**ATHENA Inclusive Group Meeting** 

#### 24 May 2021

Paul Newman (University of Birmingham)

[With thanks to many colleagues who made the plots shown here]

### **Similarities and Differences**

HERA was:

- A high energy electron-proton collider with polarised electron/positron beams

HERA was not:

- An electron-ion collider
- A polarised target machine
- A high luminosity collider

... useful to compare but not necessarily to follow ...

Disclaimer:

- I worked on H1, so examples taken from there.
- ZEUS is broadly similar
- HERMES is a different talk entirely

### H1 Detector and some immediate comments



- HERA detectors were (initially) built to focus more on high Q<sup>2</sup> / BSM searches and less on low x/Q<sup>2</sup> physics
- Reality turned out a bit differently
- 'Backward calorimeter' and
  MWPC later replaced with
  SPACAL with electromagnetic and
  hadronic sections + Backward
  Drift Chambers

- There was beamline electron tagger ( $Q^2 < 0.01 \text{ GeV}^2$ ), but then a gap in tagged electron acceptance until  $Q^2 \sim 1 \text{ GeV}^2$ , only partially / temporarily fixed later.

- Locating main HCAL inside coil improved hadronic response (obviously<sub>3</sub> limited by magnet bore size)

#### **Inclusive Reconstruction Basics**



- x, Q<sup>2</sup> (via y, Q<sup>2</sup>) can be reconstructed from any two of  $E_e$ ,  $\theta_e$ ,  $E_h$ ,  $\theta_h$  (see later for details)
- Hadronic final state kinematics also important for background rejection
- Starting point is therefore electron identification & reconstruction, plus inclusive hadronic final state measurement.

#### **Scattered Electron Identification**

- For high electron energies (>~ 10 GeV or 1/3 beam energy), choosing highest energy or highest  $p_T$  electromagnetic calo cluster is already efficient and almost background free

- At smaller energies, misidentification and 'photoproduction' background become important.



#### **Scattered Electron Identification**

- Particle ID at H1 was very limited (basically only dE/dx of tracker)
- Additional requirements improve selection efficiency and suppress most of the background:
  - ... compactness & isolation of cluster (radius, depth, HCAL fraction)
  - ... link to inner track (spatially and in E/p ratio)
  - ... overall event kinematics: total E-pz (electrons+hadrons) =  $2E_e$

| Energy $E'_e$ of scattered electron candidate        | > 3.4 GeV               |
|------------------------------------------------------|-------------------------|
| Transverse size $R_{log}$ of candidate cluster       | < 5 cm                  |
| Hadronic energy fraction behind the cluster          | $<15\%$ of ${E_e}'$     |
| Transverse distance between cluster and linked track | < 6 cm                  |
| $E - p_z$                                            | > 35 GeV                |
| z position of interaction vertex                     | $ z_v  < 35 \text{ cm}$ |

Table 1: Criteria applied to select DIS events at high inelasticity y.



6

- Residual background subtraction controlled through comparisons with 'wrong-charge' clusters & subsample with tagged photoproduction electron
- Measurements down to  $E_e \sim 3$  GeV (1/10 beam energy) were made.

#### **Inclusive Hadronic Final State Reconstruction**

- Reconstructing the inclusive hadronic final state (in general - not only high  $p_T$  jets) essential for photoproduction background rejection and kinematic reconstruction beyond electron-only methods.

- Use of hadronic final state  $p_T$  and E-pz as basic variables minimises impact of missing energy from proton remnant (which has E  $\approx$  pz)
- Energy flow algorithms developed to reconstruct hadronic final state by combining calorimeter and tracking information making optimal use of both
- Suppression of calorimeter noise at low energies is very important
- Hadronic final state measurements `easily' calibrated using pT and E-pz balance versus scattered electron in NC events



# Why not just reconstruct NC kinematics using the electron method?

 $y_e = 1 - \frac{E'_e}{E_e} \sin^2 \frac{\theta}{2}$ 

Electron method resolution in y (~1/x) degrades as 1/y ... [E<sub>e</sub>' getting large, towards the 'kinematic peak']



[Plots from Yellow Report]

... serious limitation on measurements at high x, where PDFs poorly known → important part of EIC programme

**Figure 8.17:** Resolutions, defined as (reconstructed - true)/true, for kinematic variables in NC 18x275 GeV events. The ineleasticity is require to be y < 0.95

#### A further complication: Initial State Radiation corrections

ISR corrections explode as  $y \rightarrow 1$  (i.e. at low x)



... calculable in principle, but with uncertainties due to PDFs etc

#### **Kinematic Variable Reconstruction Methods**

Any combination of  $E_e$ ,  $\theta_e$ ,  $E_h$ ,  $\theta_h$  can be used

- 1) Electron only method (NC)
- 2) Hadron only method (CC)

Even for inclusive NC processes, it is possible to do better by mixing 1) and 2).

3) Double Angle and 'DA-pT' methods ( $\theta_e$ ,  $\theta_h$ )

 $\rightarrow$  insensitive to calorimeter energy resolution

4) Sigma method and e-Sigma method  $(E_e, \theta_e, (E - p_z)_h)$ 

 $\rightarrow$  insensitive to initial state radiation

The best choice depends on kinematic region and details of detector performance. Common feature is improved resolution at low y  $^{10}$ 

#### Sigma Method

 $y_{\Sigma} = \frac{\Sigma_{h}}{E - P_{Z}} , \qquad Q_{\Sigma}^{2} = \frac{P_{T,e}^{2}}{1 - y_{\Sigma}} , \qquad x_{\Sigma} = \frac{Q_{\Sigma}^{2}}{sy_{\Sigma}} . \qquad \text{where } \Sigma_{h} = (E - p_{Z}) \text{ of hadrons}$  $E - P_{Z} = E'_{e}(1 - \cos \theta_{e}) + \sum_{i} (E_{i} - p_{Z,i}) = \Sigma_{e} + \Sigma_{h} ,$ 

#### e-Sigma Method

$$y_{e\Sigma} = \frac{Q_e^2}{sx_{\Sigma}} = \frac{2E_e}{E - P_Z} y_{\Sigma} , \qquad Q_{e\Sigma}^2 = Q_e^2 , \qquad x_{e\Sigma} = x_{\Sigma} .$$

#### **Double Angle Method**

 $y_{DA} = \frac{\tan(\theta_h/2)}{\tan(\theta_e/2) + \tan(\theta_h/2)}, \quad Q_{DA}^2 = 4E_e^2 \cdot \frac{\cot(\theta_e/2)}{\tan(\theta_e/2) + \tan(\theta_h/2)}, \quad x_{DA} = \frac{Q_{DA}^2}{sy_{DA}}. \quad \text{where} \quad \tan\frac{\theta_h}{2} = \frac{\Sigma_h}{P_{T,h}}.$ 

#### **Double Angle / pT Method**

Replace  $\theta_h$  with  $\theta_{PT}$  where

$$\tan \frac{\theta_{PT}}{2} = \frac{\Sigma_{PT}}{P_{T,e}}, \quad \text{where} \quad \Sigma_{PT} = 2E_e \frac{C(\theta_h, P_{T,h}, \delta_{PT}) \cdot \Sigma_h}{\Sigma_e + C(\theta_h, P_{T,h}, \delta_{PT}) \cdot \Sigma_h}.$$

#### **Examples of Improved Performance**

#### Low y resolution

# High y radiative corrections



## Data used in Final HERA paper

| Data Set                                                                           |       | xB; Grid  |          | O <sup>2</sup> [GeV <sup>2</sup> ] Grid |       | £                | e <sup>+</sup> /e <sup>-</sup> | $\sqrt{s}$ | $x_{\rm Bi}O^2$ from | Ref.      |  |
|------------------------------------------------------------------------------------|-------|-----------|----------|-----------------------------------------|-------|------------------|--------------------------------|------------|----------------------|-----------|--|
|                                                                                    |       | from      | to       | from                                    | to    | pb <sup>-1</sup> | 0.62                           | GeV        | equations            | 2011/2012 |  |
| HERA I $E_n = 820$ GeV and $E_n = 920$ GeV data sets                               |       |           |          |                                         |       |                  |                                |            |                      |           |  |
| H1 svx-mb[2]                                                                       | 95-00 | 0.000005  | 0.02     | 0.2                                     | 12    | 2.1              | e <sup>+</sup> p               | 301.319    | 13,17,18             | [3]       |  |
| H1 low $Q^{2}[2]$                                                                  | 96-00 | 0.0002    | 0.1      | 12                                      | 150   | 22               | e <sup>+</sup> p               | 301,319    | 13,17,18             | [4]       |  |
| H1 NC                                                                              | 94-97 | 0.0032    | 0.65     | 150                                     | 30000 | 35.6             | e <sup>+</sup> p               | 301        | 19                   | [5]       |  |
| H1 CC                                                                              | 94-97 | 0.013     | 0.40     | 300                                     | 15000 | 35.6             | $e^+p$                         | 301        | 14                   | [5]       |  |
| H1 NC                                                                              | 98-99 | 0.0032    | 0.65     | 150                                     | 30000 | 16.4             | e p                            | 319        | 19                   | [0]       |  |
| H1 CC                                                                              | 98-99 | 0.013     | 0.40     | 300                                     | 15000 | 16.4             | e p                            | 319        | 14                   | [6]       |  |
| H1 NC HY                                                                           | 98-99 | 0.0013    | 0.01     | 100                                     | 800   | 16.4             | e p                            | 319        | 13                   | [7]       |  |
| H1 NC                                                                              | 99-00 | 0.0013    | 0.65     | 100                                     | 30000 | 65.2             | $e^+p$                         | 319        | 19                   | [7]       |  |
| H1 CC                                                                              | 99-00 | 0.013     | 0.40     | 300                                     | 15000 | 65.2             | $e^+p$                         | 319        | 14                   | [7]       |  |
| ZEUS BPC                                                                           | 95    | 0.000002  | 0.00006  | 0.11                                    | 0.65  | 1.65             | e <sup>+</sup> p               | 300        | 13                   | [11]      |  |
| ZEUS BPT                                                                           | 97    | 0.0000006 | 0.001    | 0.045                                   | 0.65  | 3.9              | e <sup>+</sup> p               | 300        | 13, 19               | [12]      |  |
| ZEUS SVX                                                                           | 95    | 0.000012  | 0.0019   | 0.6                                     | 17    | 0.2              | $e^+p$                         | 300        | 13                   | [13]      |  |
| ZEUS NC[2] high/low Q2                                                             | 96-97 | 0.00006   | 0.65     | 2.7                                     | 30000 | 30.0             | e <sup>+</sup> p               | 300        | 21                   | [14]      |  |
| ZEUS CC                                                                            | 94-97 | 0.015     | 0.42     | 280                                     | 17000 | 47.7             | e <sup>+</sup> p               | 300        | 14                   | [15]      |  |
| ZEUS NC                                                                            | 98-99 | 0.005     | 0.65     | 200                                     | 30000 | 15.9             | e <sup>-</sup> p               | 318        | 20                   | [16]      |  |
| ZEUS CC                                                                            | 98-99 | 0.015     | 0.42     | 280                                     | 30000 | 16.4             | e <sup>-</sup> p               | 318        | 14                   | [17]      |  |
| ZEUS NC                                                                            | 99-00 | 0.005     | 0.65     | 200                                     | 30000 | 63.2             | e <sup>+</sup> p               | 318        | 20                   | [18]      |  |
| ZEUS CC                                                                            | 99-00 | 0.008     | 0.42     | 280                                     | 17000 | 60.9             | e <sup>+</sup> p               | 318        | 14                   | [19]      |  |
| HERA II $E_p = 920 \text{ GeV}$ data sets                                          |       |           |          |                                         |       |                  |                                |            |                      |           |  |
| H1 NC 1.5p                                                                         | 03-07 | 0.0008    | 0.65     | 60                                      | 30000 | 182              | e <sup>+</sup> p               | 319        | 13, 19               | [8]1      |  |
| H1 CC 1.5p                                                                         | 03-07 | 0.008     | 0.40     | 300                                     | 15000 | 182              | e <sup>+</sup> p               | 319        | 14                   | [8]1      |  |
| H1 NC 1.5p                                                                         | 03-07 | 0.0008    | 0.65     | 60                                      | 50000 | 151.7            | e p                            | 319        | 13, 19               | [8]1      |  |
| H1 CC 1.5p                                                                         | 03-07 | 0.008     | 0.40     | 300                                     | 30000 | 151.7            | e p                            | 319        | 14                   | [8]1      |  |
| H1 NC med O2 *y.5                                                                  | 03-07 | 0.0000986 | 0.005    | 8.5                                     | 90    | 97.6             | e <sup>+</sup> p               | 319        | 13                   | [10]      |  |
| H1 NC low 02 *9.5                                                                  | 03-07 | 0.000029  | 0.00032  | 2.5                                     | 12    | 5.9              | e <sup>+</sup> n               | 319        | 13                   | [10]      |  |
| ZEUS NC                                                                            | 06-07 | 0.005     | 0.65     | 200                                     | 30000 | 135.5            | e <sup>+</sup> p               | 318        | 13,14,20             | [22]      |  |
| ZEUS CC 1.5p                                                                       | 06-07 | 0.0078    | 0.42     | 280                                     | 30000 | 132              | e <sup>+</sup> n               | 318        | 14                   | [23]      |  |
| ZEUS NC 1.5                                                                        | 05-06 | 0.005     | 0.65     | 200                                     | 30000 | 169.9            | e <sup>-</sup> n               | 318        | 20                   | [20]      |  |
| ZEUS CC 1.5                                                                        | 04-06 | 0.015     | 0.65     | 280                                     | 30000 | 175              | e p                            | 318        | 14                   | [21]      |  |
| ZEUS NC nominal *9                                                                 | 06-07 | 0.000092  | 0.008343 | 7                                       | 110   | 44.5             | e <sup>+</sup> n               | 318        | 13                   | [24]      |  |
| ZEUS NC satellite *                                                                | 06-07 | 0.000071  | 0.008343 | 5                                       | 110   | 44.5             | e <sup>+</sup> n               | 318        | 13                   | [24]      |  |
| HERA IF $E = 575$ GeV days sets                                                    |       |           |          |                                         |       |                  |                                |            |                      |           |  |
| HINC high $Q^2$                                                                    | 07    | 0.00065   | 0.65     | 35                                      | 800   | 5.4              | e <sup>+</sup> n               | 252        | 13 10                | 101       |  |
| HI NC low $O^2$                                                                    | 07    | 0.0000279 | 0.0148   | 15                                      | 90    | 5.9              | e p<br>e <sup>+</sup> p        | 252        | 13, 19               | [10]      |  |
| ZEUS NC nominal                                                                    | 07    | 0.000147  | 0.013340 | 7                                       | 110   | 7.1              | e p<br>e <sup>+</sup> p        | 251        | 13                   | [24]      |  |
| ZEUS NC nonlinal                                                                   | 07    | 0.000125  | 0.013349 | 5                                       | 110   | 7.1              | e p                            | 251        | 13                   | [24]      |  |
| HERA II $E = -60$ GeV data sets                                                    |       |           |          |                                         |       |                  |                                |            |                      |           |  |
| H1NC bigh 0 <sup>2</sup> 07 0.00081 0.65 35 800 118 e <sup>+</sup> p 225 13.10 [0] |       |           |          |                                         |       |                  |                                |            |                      |           |  |
| H1 NC low $O^2$                                                                    | 07    | 0.00081   | 0.03     | 15                                      | 006   | 12.2             | e p                            | 225        | 13, 19               | [9]       |  |
| TELIS NG seminal                                                                   | 07    | 0.0000348 | 0.0146   | 1.5                                     | 90    | 12.2             | e p                            | 225        | 13                   | [10]      |  |
| ZEUS NC nominal                                                                    | 07    | 0.000184  | 0.016686 |                                         | 110   | 13.9             | e p                            | 225        | 13                   | [24]      |  |
| ZEUS NC satellite                                                                  | 0/    | 0.000143  | 0.016686 | 5                                       | 110   | 13.9             | e p                            | 225        | 15                   | [24]      |  |

Input data to final HERA combination

#### Executive NC summary:

- e-method (13) used in limited phase space regions only

-  $\Sigma$ , e $\Sigma$  (17,18, 19) used extensively by H1 at low y (<~ 0.1-0.2)

- DA, pT (20,21) used extensively by ZEUS

#### **Summary / Questions**

Beyond the (excellent) material in the Yellow Report... some thoughts on things we may still want to investigate in ATHENA inclusive group ...

[all depend on details of detector; requires simulation of proposed solutions and reconstruction algorithms based on multiple components]

- What can be gained in scattered electron selection / background rejection from sophisticated requirements including cluster compactness, isolation, overall event E-pz etc?
- What level of performance is needed / can be obtained in overall hadronic final state reconstruction (via energy flow algorithms using multiple detector components)
- How much can we improve on NC kinematic reconstruction by trying sigma and double-angle methods?

 $\rightarrow$  Possibly significant implications for detector design ...