LGADs-based TOF for ECCE

- status of simulations in Fun4All

Wei Li (Rice University)

ECCE PID WG meeting May 20, 2021

p (GeV/c)

Concept of LGADs sensors

Low Gain Avalanche Diodes (LGADs)

High E field \rightarrow larger, faster signal \rightarrow better timing resolution

E field Traditional Silicon detector

Ultra Fast Silicon Detector E field

Adding an extra doping layer
E ~ 300 kV/cm, close to breakdown

LGADs at the HL-LHC (2028)

LGADs TOF simulation in Fun4All

- Silicon layers with timing and position smeared to expected resolution
- Timing and path length of each track stored for calculating the velocity
- Material budget is dummy for now. Expect $< 0.2\% X_0$ per two layers based on CMS ETL

Friederike Bock (<u>Friederike.Bock@cern.ch</u>), Shuai Yang (<u>shuai.yang@rice.edu</u>)

https://github.com/eic/fun4all	_eicmacros/blob/maste	r/common/	G4_TTL_EIC.
--------------------------------	-----------------------	-----------	-------------

	Default	R _{barrel}	Length	z location	R _{endcap,in}	R _{endcap,out}	η coverage	Area (m²)
Backward	ETTL ₀			-1.555	0.077	0.632	[-3.7,-1.6]	1.23
	$ETTL_1$			-1.585	0.078	0.62	[-3.7,-1.6]	1.19
Central	$CTTL_0$	0.92	3.6				[-1.34,1.34]	20.8
	$CTTL_1$	1.147	3.6				[-1.11,1.11]	25.9
Forward	FTTL ₀			2.87	0.116	1.527	[1.3,3.9]	7.28
	$FTTL_1$			2.89	0.117	1.538	[1.3,3.9]	7.39
	FTTL ₂			3.4	0.138	2.185	[1.1,3.9]	14.94

PID performance

PID performance

Iterative procedure to determine T_0 :

- Assume scattered e is detected by TOF
- Start with pion assuming for all other particles to fit T₀
- Update mass assumption for outliers in next iterations

Details described in <u>https://wiki.bnl.gov/conferences/images/0/01/ERD29_progress_report_March2021.pdf</u> (still optimizing)

Forward tracking with LGADs

Tracking w/o vs. w/ LGADs layers

LGADs layers will serve as outer tracker to improve *p* resolution by up to 50% at 100 GeV/c and efficiency at forward y

Status of various R&Ds

Pitch size: 1.3 mm – 700 (500) μm (mainly limited by ASICs)

 $\sigma_{T} \sim 20 \ \text{ps}$ with 20-25 μm sensors well within the reach

Small pitch \rightarrow more channels \rightarrow more power consumption (~ 2 mW/ch)

LGADs consortium meeting on electronics: <u>https://indico.bnl.gov/event/11717/</u>

What is the realistic cool capability?

<u>Backups</u>

