Exploding stars and the synthesis of heavy elements

Artemis Spyrou

MICHIGAN STATE UNIVERSITY

National Science Foundation Michigan State University

Overview

- Nuclear Astrophysics
- Heavy Element Synthesis
- R-process
- Nuclear Physics Input
- Current Experiments
- New Opportunities
- Future FRIB

Credit: Erin O'Donnel, MSU

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

National Science Foundation Michigan State University

 H^{1}

Li³

National Science Foundation Michigan State University

National Science Foundation Michigan State University

National Science Foundation Michigan State University

How Can We Tell?

Star contains Technetium (Tc) !!! (heavy element Z=43, $T_{1/2} = 4$ Million years Merrill 1952)

NATIONAL ACADEMY OF SCIENCES

Abstracts of Papers Presented at the Annual Meeting April 28-30, 1952, Washington, D. C.

Paul Merrill, Mount Wilson Observatory

Merril 1952: "It is surprising to find an unstable element in the stars"

... "(1) A stable isotope (of technetium) actually exists although not yet found on Earth; or (2) S-type stars somehow produce technetium as they go along; or (3) S-type stars represent a comparatively transient phase of stellar existence"

Nucleosynthesis paths

From St. John's College, University of Cambridge

National Science Foundation Michigan State University

s/r-process paths and abundances

National Science Foundation Michigan State University

R-Process Simulation

National Science Foundation Michigan State University

Made with SkyNet by Jonas Lippuner

Kilonova in GW170817 Neutron Star Merger

Artemis Spyrou, BNL, June 2021, Slide 12

More observations

¹²⁹I and ²⁴⁷Cm in meteorites constrain the last astrophysical source of solar r-process elements

Benoit Côté^{1,2,3}*, Marius Eichler⁴, Andrés Yagüe López¹, Nicole Vassh⁵, Matthew R. Mumpower^{6,7}, Blanka Világos^{1,2}, Benjámin Soós^{1,2}, Almudena Arcones^{4,8}, Trevor M. Sprouse^{5,6}, Rebecca Surman⁵, Marco Pignatari^{9,1}, Mária K. Pető¹, Benjamin Wehmeyer^{1,10}, Thomas Rauscher^{10,11}, Maria Lugaro^{1,2,12} Science 26 Feb 2021: Vol. 371, Issue 6532, pp. 945-948 DOI: 10.1126/science.aba1111

The composition of the early Solar System can be inferred from meteorites. Many elements heavier than

iron were formed by the rapid neutron capture process (r-process), but the astrowhere this occurred remain poorly understood. We demonstrate that the near-id (=15.6 million years) of the radioactive r-process nuclei iodine-129 and curium-24 irrespective of the time between production and incorporation into the Solar Sys last r-process source by comparing the measured meteoritic ratio $^{129}I/^{247}Cm = 4$ nucleosynthesis calculations based on neutron star merger and magneto-rotation simulations. Moderately neutron-rich conditions, often found in merger disk ejecta consistent with the meteoritic value. Uncertain nuclear physics data limit our co conclusion.

Uncertain nuclear physics data limit our confidence in this conclusion

National Science Foundation Michigan State University

r-process in neutron-star mergers

National Science Foundation Michigan State University

r-process in neutron-star mergers

National Science Foundation Michigan State University

What's known?

figure by M. Mumpower

National Science Foundation Michigan State University

Current (n, γ) measurements

National Science Foundation Michigan State University

The trouble with Neutron Capture Reactions

Regular kinematics

Inverse kinematics

- Measuring Neutron Capture reactions on short-lived nuclei is challenging
- Cannot make a neutron target
- Cannot make a target out of a short-lived isotope
- Need indirect techniques

National Science Foundation Michigan State University

Neutron capture reactions

- Variation of theoretical predictions using TALYS code, changing model parameters
- Predictions diverge moving away from stability

R-process sensitivity to neutron captures

S NSCL

National Science Foundation Michigan State University Liddick, Spyrou, et al., PRL

Artemis Spyrou, BNL, June 2021, Slide 20

2016

R-process sensitivity to neutron captures

Neutron Capture – Uncertainties

β-Oslo method:

- Combine traditional Oslo Method with Total Absorption Spectroscopy
- Use β-decay to populate the compound nucleus of interest
- Advantage: study nuclei far from stability

Neutron Capture – Indirect studies

Michigan State University National Superconducting Cyclotron Laboratory

National Science Foundation Michigan State University

Coupled Cyclotron Facility

National Science Foundation Michigan State University

National Superconducting Cyclotron Lab

National Science Foundation Michigan State University

Summing NaI – SuN and friends

National Science Foundation Michigan State University

Weak r-process measurements

Current Reach

National Science Foundation Michigan State University

Facility for Rare Isotope Beams

- Facility for Rare Isotope Beams (FRIB) Project constructs a \$730 million scientific user facility funded by the Department of Energy Office of Science (DOE-SC), Michigan State University, and the State of Michigan
 - -DOE-SC \$635.5 million
 - State of Michigan \$94.5 million
- Planned FRIB completion date is June 2022, managing to early completion in 2021
- Upon FRIB completion, NSCL stops operation and FRIB Laboratory starts operation as a DOE-SC scientific user facility for world-class rare isotope research supporting the mission of the Office of Nuclear Physics in DOE-SC

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Facility for Rare Isotope Beams, FRIB

Michigan State University Campus

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Summary - Conclusions

- Nuclear structure and reactions are important input in astrophysical calculations
- New techniques to solve the problem of unconstrained neutron-capture reactions far from stability
- FRIB will bring new capabilities and access to a lot more exotic nuclei

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Collaboration

MICHIGAN STATE UNIVERSITY B. Crider S.N. Liddick K. Cooper A.C. Dombos R. Lewis D.J. Morrissey F. Naqvi C. Prokop S.J. Quinn C.S. Sumithrarachchi R.G.T. Zegers

%TRIUMF

NIVERSITY

D. Muecher

A.C. LarsenM. GuttormsenT. RenstrømS. SiemL. Crespo-Campo

A. Couture S. Mosby

Lawrence Livermore National Laboratory

D. L. Bleuel

G. Perdikakis S. Nikas

National Science Foundation Michigan State University