Discussion topics

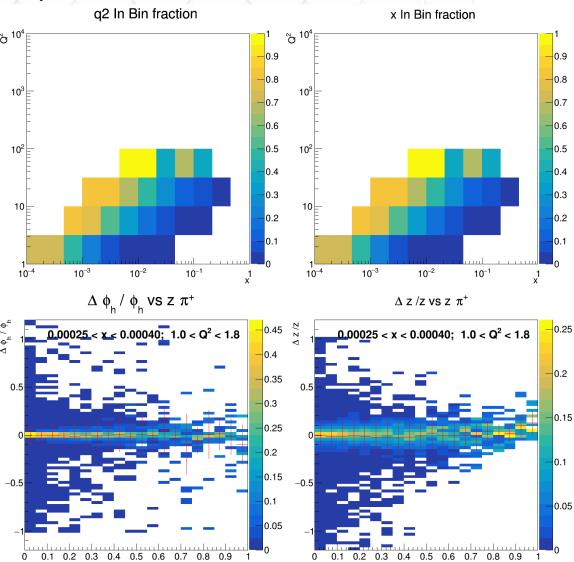
SIDIS meeting May 25

Charlotte Van Hulse Ralf Seidl (RIKEN)

- Tracking group requests input about tracking requirements from physics groups:
 - How to address this?
 - x, Q^2 , ϕ_S and z, P_{hT} , ϕ_h resolutions for different tracking assumptions ?
 - Could be done via eic-smear studies rapidly.
 - require momentum resolutions as a function of rapidity from tracking group and feed it into eic-smear
- Would minimum momentum ranges for detector options affect measurements?
 - Check 4D plots for different min possibilities

Impact studies and plots for proposal

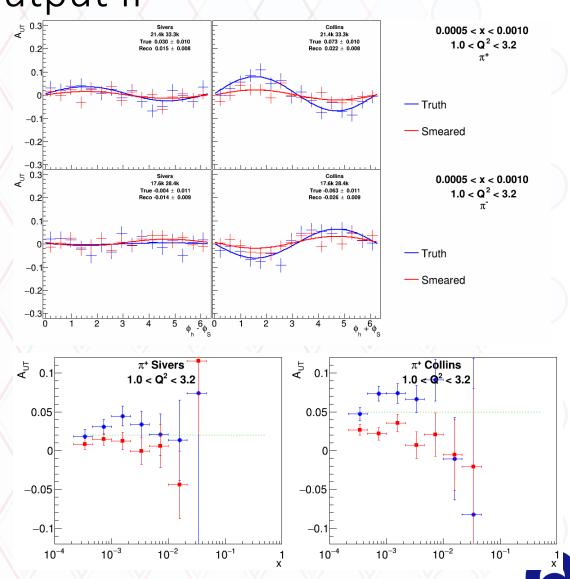
- Concentrate on two energy combinations? Highest and lowest energies (5x41, 18x250 or only 10x250,)? Reasonable for simple asymmetry feasibility at low x/low Q2 corner, high x/high Q2 corner and low y corners
- What are the early physics goals that can be achieved in 1st year 5fb⁻¹?
- Apart from impact plots also show the explicit expected asymmetries, or both
 - Compare perfect detector, YR, 1-2 ECCE configurations?
 - How to discuss and estimate systematics?
- Sample asymmetry plots (fixed bin(s)), show asymmetries for different configurations and effect of smearing

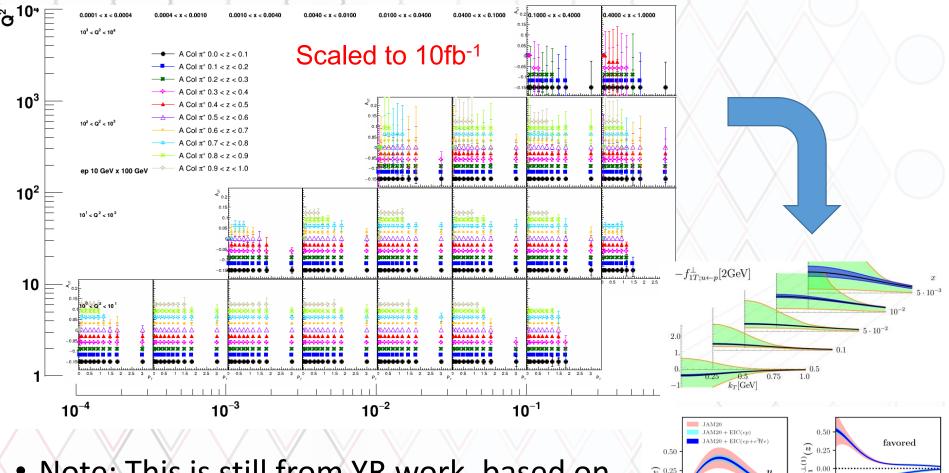


Some example Output I

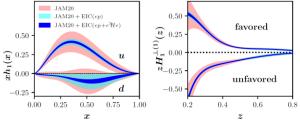
 Low level: DIS in-bin efficiencies (using scattered lepton only)

 Medium level: Some resolutions for hadron z, azimuthal angles in one particular z-Q² bin




Some example Output II

- High level:


 Reweighted azimuthal single spin
 asymmetries
 - Very simplified constant (in x, Q², z, P_{hT}) weights in true variables
 - Far from enough statistics, but demonstration of smeared asymmetry test

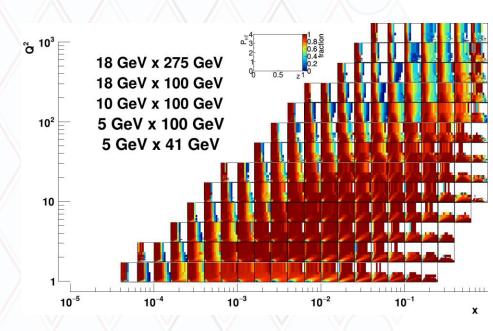
Expected Sivers/Collins asymmetries

 Note: This is still from YR work, based on eic-smear output only, NOT YET GEANT based!!

Key SIDIS physics measurements (must-do)

- Quark Sivers function as a function of x, k_t for valence and sea flavors: $A_{UT}\sin(\phi_s-\phi_h)$ moments for IDed pions and kaons (Golden channel)
- Tensor charges for valence and sea quarks A_{UT} $\sin(\phi_S + \phi_h)$ moments for IDed pions and kaons (silver channel)
- Unpolarized TMD PDFs and its QCD evolution (silver channel, implicit requirement for Sivers)
- Sea quark helicities via SIDIS A₁ (A_{LL}) measurements for IDed pions and kaons (golden channel)
- Gluon Sivers function via di-jet or HF pair A_{UT}s (Still open)

Other measurements (can-do)


- Boer-Mulders function measurements via IDed pion and kaon $cos(n\phi_h)$ moments (likely most acceptance sensitive)
- Fragmentation function FF measurements and nFF measurements for light hadrons
- Unpolarized sea quark PDF meausurements using FFs
- Various other single and di-hadron azimuthal moments related to tensor charge, higher twist function e, and others
- XYZ production measurements (mostly photoproduction, not SIDIS but part of SIDIS YR, could also be in HF group
- Other Jet related TMD measurements → HF/Jet group?

Main figures for the report

- 4D (x-Q²-P_{hT}-z) kinematical + PID coverage figure similar to YR
 - Concentrate for the most part on certain x-Q2 ranges due to simulation cost
- Closely related: z, P_{hT} and φ_s, φ_h smearing figure for different ECCE configurations
- Simulations can start from the YR Pythiaerhic/eicsmear files

Fig. 8.29

→ Already prepared for the most part

Sivers/Collins/unpol TMD figures

- Redo these YR analyses (AUTs require reweighting of events in truth kinematics+parton flavor)
- Need to take into account crossing angle and related acceptance/smearing effects
- Similar to YR guess systematics via variation between perfect and smeared options
- Extrapolate from some x-Q2 bins to all and give to Alexey Vladimirov (Sivers, unpol TMD) or Daniel Pitonyak (Tensor charge) for impact studies

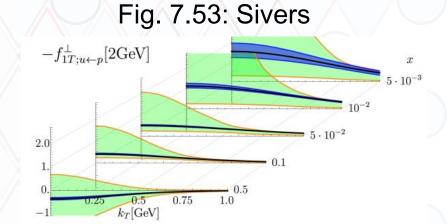
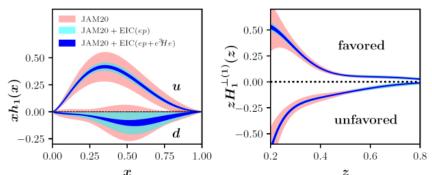



Fig. 7.54: Transversity

→ feasible using EventEvaluator, reweighting machinery still to be transferred from eic-smear based work

