

Flavorful ways to New Physics

Angelo Di Canto

What is flavor (in particle physics)?

The birth of flavor physics

- 1932: discovery of the neutron
 - (Almost) Same mass as the proton
 - Same coupling to the strong interaction (*i.e.*, the force that bounds atomic nuclei)
- Is there a real difference between the proton and the neutron?

Isospin

- Same year, Heisenberg proposed neutron and proton are an 'isospin doublet'
 - Two quantum states of the same particle (like spin-1 and spin-1 electron)

$$p: (I, I_3) = (1/2, +1/2)$$
 $n: (I, I_3) = (1/2, -1/2)$

Later extended to other particles: e.g., pions form an isospin triplet

$$\pi^+$$
: $(I, I_3) = (1, +1)$ π^0 : $(I, I_3) = (1, 0)$ π^- : $(I, I_3) = (1, -1)$

The eightfold way (1953)

The quark model

+ antimatter counterparts (\bar{u} , d, ...) with opposite quantum numbers

Quarks are confined into bound states called hadrons

 $q_1\bar{q}_2 = \text{meson}$

 $q_1q_2q_3 = baryon$

+ more complex states (e.g., pentaquarks)

 Exception is top, which is too heavy and decays before forming hadrons

The eightfold way with quark flavors

Mesons

The eightfold way with quark flavors

Mesons

Flash question

What is the quark content of the nucleons?

$$p: (Q, I_3, S) = (+1, +1/2, 0)$$
 $n: (Q, I_3, S) = (0, -1/2, 0)$

Flash question

What is the quark content of the nucleons?

$$p: (Q, I_3, S) = (+1, +1/2, 0)$$

$$n: (Q, I_3, S) = (0, -1/2, 0)$$

$$p = (uud)$$

$$n = (udd)$$

Homework assignment: determine quark content of the baryon octet

Baryons

Standard Model of Elementary Particles

What is flavor physics?

- Studies the flavor structure of the Standard Model
 - Why are there so many fermions? Why are they arranged into generations? Why exactly 3 generations? ...
- It includes kaon physics (strange quark), charm & beauty physics (heavy quarks), some aspects of top physics, charged leptons and neutrinos
- No time to cover everything its a huge and diverse field
- Focus will be on flavor-changing interactions of heavy quarks

 Quarks change flavor through the charged weak interaction

- Quarks change flavor through the charged weak interaction
- But... they are bound by the strong interaction into hadrons
- Cannot observe weak interaction in isolation ⇒ makes theoretical predictions tougher

- Quarks change flavor through the charged weak interaction
- But... they are bound by the strong interaction into hadrons
- Cannot observe weak interaction in isolation

 makes theoretical predictions tougher

- Quarks change flavor through the charged weak interaction
- But... they are bound by the strong interaction into hadrons
- Cannot observe weak interaction in isolation ⇒ makes theoretical predictions tougher

- Many possible quark combinations

 many possible decays and wide program of measurements to over-constrain the SM parameter-space
- The hardest part of quark flavor physics is learning the names and properties of all the damned hadrons!

Why is heavy-flavor physics interesting?

- Sensitive to effects of new particles and forces beyond the Standard Model — even particles too massive to be produced at the energy frontier (i.e., at the LHC)
- May explain the 'matter dominance' of the Universe –
 one of the big mysteries linking particle physics and
 cosmological observations ⇒ CP violation

 Look for the effects of exchange of virtual new particles in suppressed (loop) processes

Quantum-probe of higher energies than directly accessible

 Look for the effects of exchange of virtual new particles in suppressed (loop) processes

Quantum-probe of higher energies than directly accessible

High-energy production of new particles

Low-energy precision measurements

High-energy production of new particles

Low-energy precision measurements

(Often) New Physics shows up at precision frontier before energy frontier

A lesson from history: the GIM mechanism

 Some apparently allowed decays are never observed: e.g.,

$$K^+ \rightarrow \mu^+ \nu_\mu$$
 is observed
 $K^0 \rightarrow \mu^+ \mu^-$ is not, why?

A lesson from history: the GIM mechanism

 Some apparently allowed decays are never observed: e.g.,

$$K^+ \rightarrow \mu^+ \nu_\mu$$
 is observed $K^0 \rightarrow \mu^+ \mu^-$ is not, why?

Glashow, Iliopoulos, Maiani postulated in 1970 a fourth quark (charm) to introduce a new amplitude with equal magnitude but

opposite sign

total amplitude highly suppressed!

(cancellation not perfect because $m_u \neq m_c$)

$$V_{us}V_{ud}^* f(m_u/m_W) + V_{cs}V_{cd}^* f(m_c/m_W) \approx 0$$

Discovery of charm

J (Ting; BNL)/ψ (Richter, SLAC) discovery, 1974

The ultimate loop experiment

 Results in 'oscillations' between particles and antiparticles as a function of time

Red Line: given a P^0 at t=0, the probability of finding a \overline{P}^0 at t

[arXiv:1209.5806]

Reach

C, P and CP symmetries

Quantum-mechanical operators

C: transforms particles in antiparticles

P: flips spatial coordinates (mirror symmetry)

CP: combination of both, distinguishes matter from antimatter

 P and C are both maximally violated by weak interactions (no right-handed neutrinos, no left-handed antineutrinos),
 CP assumed to be conserved until 1964

Discovery of CP violation

- Produce pure beam of CPodd neutral kaons (K_L)
- Look for decays to CP-even $\pi^+\pi^-$ state \Longrightarrow produced back-to-back, so $\cos(\theta)=1$

The Alternating Gradient

Synchrotron at BNL in 1959

The Cabibbo-Kobayashi-Maskawa matrix

 The matrix that describes the couplings of quark-flavorchanging interactions

- The matrix that describes the couplings of quark-flavorchanging interactions
- With 3 generations of quarks the matrix has one imaginary number (phase)

- The matrix that describes the couplings of quark-flavorchanging interactions
- With 3 generations of quarks the matrix has one imaginary number (phase)
- Such phase is responsible for *CP* violation: weak-interaction couplings differ for quarks and antiquarks because *CP* flips the sign of imaginary numbers

 $\lambda \approx 0.22$

 CKM matrix is unitary ⇒ 9 equations relates its elements: e.g.,

$$1 + \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} + \frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} = 0$$

• CKM matrix is unitary \Longrightarrow 9 equations relates its elements: *e.g.*,

• CKM matrix is unitary \Longrightarrow 9 equations relates its elements: *e.g.*,

• CKM matrix is unitary \Longrightarrow 9 equations relates its elements: *e.g.*,

Area of the triangle quantifies amount of CP violation

 The only CP violation parameter that can be measured from tree diagrams → negligible theory uncertainties

The two diagrams interfere when D^0 and D^0 decay to the same final state (needed to observe CP violation)

All consistent...

- A global campaign of thousands of measurements conducted in the past 25+ years to experimentally explore the quark-flavor sector
- The Standard Model seems sufficient to accommodate all quarkflavor phenomena observed so far

...or maybe not?

• Consistent pattern of deviations in $b \rightarrow s\mu^+\mu^-$ transitions, but predictions have large hadronic uncertainties

A much cleaner probe

 Contrarily to quarks, the couplings of the electroweak force to charged leptons are universal

• Branching fractions of b hadrons into e, μ and τ differ only because of the different lepton masses

Violation of lepton-flavor universality?

- Couplings of New Physics particles to leptons may instead depend on flavor
- Violation of lepton flavor universality would be an unambiguous sign of physics beyond the Standard Model

Violation of lepton-flavor universality?

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B \to K^{(*)} e^+ e^-)}$$

Could it be new physics?

Fit from W. Altmannshofer and P. Stangl arXiv:2103.13370

Consistent with new physics in channels with muons

Similar fits from other groups: Algueró et al., arXiv:1903.09578 Kowalska et al., arXiv:1903.10932 Ciuchini et al., arXiv:2011.01212 Datta et al., arXiv:1903.10086 Arbey et al., arXiv:1904.08399 Geng et al., arXiv:2103.12738

And there's even more...

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau^+\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\mu^+\nu_{\mu})}$$

Heavy-flavor experiments

Belle II
© SuperKEKB (e+e+ collider)
KEK, Japan

© BEPCII (e+e- collider)
IHEP, China

Summary

- Quark-flavor physics allows to explore some of the deepest questions that are not answered by the Standard Model
- A diverse and rich field: many hadrons, many final states, many observables sensitive to New Physics
 - And to energy scales much higher than directly accessible at colliders
- After 20+ years of confirming the Standard Model, some intriguing hints of unexpected phenomena are popping up
 - Exciting times: New Physics may be just around the corner

Oues 7001S

Interference and CP violation

Direct CPV:
$$|A| \neq |\bar{A}|$$
; $A_{CP} \equiv \frac{\Gamma(B \to f) - \Gamma(B \to f)}{\Gamma(B \to f) + \Gamma(\bar{B} \to \bar{f})} \neq 0$

• Easiest way to get CPV is with 2 interfering amplitudes (e.g. tree and penguin) with different weak (CP-odd) and strong (CP-even) phases

$$A(B \to f) = A = A_1 + A_2$$

$$A(\bar{B} \to \bar{f}) = \bar{A} = \bar{A}_1 + \bar{A}_2$$

CP transformation:

strong phase: $\delta \rightarrow \delta$

weak phase: $\phi \rightarrow -\phi$

$$A_1 = |A_1|$$
 $A_1 = |A_1|$ $A_2 = |A_2|e^{i\delta}e^{i\phi}$ $A_2 = |A_2|e^{i\delta}e^{-i\phi}$

$$|A| \neq |\bar{A}| \qquad r \equiv |A_2/A_1|$$

$$A_{CP} = \frac{2r\sin\delta\sin\phi}{1 + r^2 + 2r\cos\delta\cos\phi}$$