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...I am induced by many reasons to suspect that they [phe-
nomena of nature] may all depend upon certain forces by
which the particles of bodies, by some causes hitherto un-
known, are either mutually impelled towards each other, and
cohere in regular figures, or are repelled and recede from each
other; which forces being unknown, philosophers have hith-
erto attempted the search of nature in vain, but I hope the
principles here laid down will afford some light either to this
or some truer method of philosophy.

Sir Isaac Newton (1643-1727)

(Preface to Principia)



h~105x103%Js : ¢=x3.0x10% m/s
h=c=1 in what follows

Mass and Energy measured in eV

Length « 1/Mass

GeV (Giga eV) = 10° eV

proton mass ~ 1 GeV

TeV (Tera eV) = 1012 ev



Everyday life:

Gravity and Electromagnetism (EM)




Falling Apple: Gravity

Well-described by Newtonian gravity

State of the Art: General relativity (GR)

Spacetime curved by matter/energy.

Sun

Gravitational Force — Geodesic.
Earth’s Orbit

Basis of modern cosmology.

Einstein’s equations:

Curvature Energy Distribution

g;u/ — 87TGN771,1/

Gy Newton’s constant, u,v = 0,1,2,3 (spacetime).



* Detection of Gravitational Waves x
e Directly confirmed a long-standing (~ 100 year) GR prediction

e Manifestation of the dynamical nature of spacetime

(SXS Project)

e Outstanding experimental achievement: measured strain (distance
variation) ~ 107211 (highly sophisticated laser interferometry)

e 2017 Nobel Prize in Physics: Barish, Thorne, and Weiss



Shadow of M87*, Event Horizon Telescope
Mass: ~ 6.5 Billion Solar Masses ; Distance: ~ 55 Million Light Years

Results released April 10, 2019



Apple on the ground: Quantum Mechanics
and EM

Atoms in apple and ground: Electron cloud interactions stop the fall.
- Pauli’s exclusion principle for electrons; EM: repulsion.
Atom: Nucleus (p and n) and electrons; Quantum Mechanics.

Nuclear forces: weak and strong, not everyday, microscopic.

Weak and EM forces — Unified Electroweak T heory.

Summed up in the Standard Model of particle physics.




The Standard Model (SM):

Most precise description of microscopic physics

Gauge symmetry: SU(3)(strong) X SU(2) x U (1)(electroweak)

Elementary fermions, spin-1/2* The Standard Model of
Quarks (+2/3,—1/3): Strong interactions Particle Interactions
Leptons (0, —1): No strong interactions fes reprations of Matier

I 11 III

Gauge Fields, spin-1

Force mediators, generalized photons

Leptons Quarks
Force Carriers

(Pre 2012)

* Spin: intrinsic angular momentum (quantum mechanics)



Strong Interactions [SU(3) (QCD)]:

QCD: Quantum Chromodynamics

» Short-ranged, confined to nuclear distances ~ 10~ 1°m

- Gluons (g) bind quarks into NAArONS (hadros: Greek for “bulky”):
p, n, ™ (qq),. ..




Electroweak Interactions [SU(2); x U(1)y]:

Spontaneously broken to EM

— Massive W= (80.4 GeV/c?), ZY(91.2 GeV/c?)

~ 107 m (energy-time uncertainty)

Short-ranged: Ax ~cAt~c X 5
mcC

Q: Why are there stable neutrons in atomic nuclei?

EM: U(1) gy (QED)

Massless photon, ~, long-ranged




Tabletop Spontaneous Symmetry Breaking

A pencil, standing on its tip: unstable, falls to its “ground state’.

e Underlying theory: rotationally symmetric, no preferred direction.
e T he pencil spontaneously picks an orientation, breaks the symmetry.

Symmetric

(Top View)
Unstable

Spontaneous

Symmetry Breaking

Broken Symmetry

Ground State
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Electroweak Symmetry Breaking in SM
e Higgs (H) boson condensation (H) # 0.

e Elementary particle masses from interactions with (H) #= O:

o My, Mz, Mfermion X <H>

« Fermion flavor: my/my ~ 102! (Why?)

e 'm, = 0| (Strongly disfavored by data!)

Re(d)

Q: How much of the ‘“visible” mass in Universe is from Higgs?
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July 4th, 2012, discovery announced at CERN

Scalar (spin-0) H boson discovered at ~ 125 GeV
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SM + GR = Great Success!

Fermions Bosons

Matter Force Carriers
. Quarks . Gauge bosons
. Leptons Higgs boson

Particles of the Standard Model

Nearly all* measurements in agreement with SM+4+GR.

* Except, for example, potential hints from muon ¢g — 2 (more later), some B
meson (bound state of b quark with a light quark) decays,. ..
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SM: An Incomplete Description of Nature
e [ heoretical Hints
Why is gravity so weak?

Why is the neutron electric dipole moment so small?

e Experimental Evidence

Non-zero neutrino masses, dark matter, ...
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Conceptual Mystery: Why is gravity so weak?

F(Grav)
F (EM)

Force between e and p in an atom: ~ 10401
Gravity: the weakest known interaction
Newton’s Constant: Gxn = 6.67 x 10711 m3kg—1s—2
Gravity scale: Planck mass

Mp = (he/GN)Y2 = 1019 GeV ~ (10735 m) 11

(mass < 1/length; uncertainty)

Mp > my



Rephrase the question: Why is myy ~ 101" Mp?
The Hierarchy Problem:
e Higgs mass my =~ 125 GeV, but quantum effects imply my — Mp.

heavy (M)

2 2 2
- om ~ A M

light (m) ) 2
(coupling)

= m2; ~ (100 GeV)?: cancellations to
0.0000000000000000000000000000000001 !

e Conceptually *unnatural”

A much more severe case (Cosmological Constant Problem):
Energy density of empty space (~ 10712°M3)
18



Hierarchy and New Physics Near mgy

e Strong Interactions near myg

- Composite Higgs (analogue of a QCD hadron)

- Extra dimensions (lowering the fundamental mass scale of gravity
by diluting it in compact extra dimensions)

Particle
[
e Supersymmetry: Fermions < Bosons. ? ) Y
292 |
- Quantum effects on (H) cancel ‘ ‘

Supersymmetric
"'shadow" particles

e So far, no firm evidence at LHC for new physics near myg ~ 125 GeV

e New physics elusive, or perhaps “naturalness” not the right guide
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Strong Empirical Evidence for Beyond SM

e Neutrino Flavor Oscillations
Solar, atmospheric, and terrestrial data:
my S 10~ 6 m,

Simple extension: right-handed* neutrinos vg

% @

Spin and momentum aligned

o Typically, difficult to test:

- Vg Vvery massive or else negligible coupling to SM

e Cosmology

Dark Matter: neutral, cosmologically stable



Cosmos: 95% unknown!

Planck

Dark Energy

Cosmic acceleration (dark energy):

Could be vacuum energy (cosmological constant); no dynamics

21



Visible (Everyday) Matter
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e ~ 5% of energy budget
e Baryonic: protons, neutrons

e Asymmetric: AB #= 0 (negligible anti-matter today)



Generation of Baryon Asymmetry
e Requires Sakharov's conditions for baryogenesis:
(i) Baryon number violation
(ii) C and CP violation (distinguishing particles from anti-particles)
(iii) Departure from equilibrium
e Conditions absent [(iii)] or not at sufficient levels [(ii)] in the SM
e AB small, ng/ny ~ 1072, but still too big to explain!

= New Physics
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Dark matter (DM)

o ~ 27% of energy density

e Robust evidence from cosmology and astrophysics

e CMB, BBN, rotation curves of galaxies, lensing, Bullet Cluster, ...

e Unknown origin
e Feeble interactions with atoms and photons ‘
e Self-interactions not strong (o <1 barn)

e Not explained in SM

Strongly motivates new physics

So far, evidence limited to gravity effects

24



How do you look for something of unknown nature?

Possible DM mass scale: 10722 eV < Mpm S 1098 ev

(~ 90 orders of magnitude!)

Q: Why is there a lower bound (~ 10722 eV)?
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Searches often guided by theoretical motivation
e New physics to address unresolved questions in SM

Example:

« I he hierarchy problem in SM:

- New particles with masses Mnew & My (=~ 125) GeV: supersymmetry, ...

- Energy scale often referred to as the “weak scale” (weak interactions)
= Weakly Interacting Massive Particles (WIMPs)
e SM extensions often introduce/require new symmetries

e Symmetry — Charge conservation
= Stable or long-lived particles: DM candidates

26



WIMPS

e [ hermal relic density: annihilation, freeze-out -~

DM

- PWIMP X< 1/0ann

- Oann ™~ 94/M2
DM

- g ~ gweak: M ~ TeV: roughly the right amount of DM
e Weak scale (~ TeV) theoretically motivated

- However, ¢*/M? may be achieved otherwise (WIMPIless Miracle)

Feng and Kumar, 2008

e WIMPSsS: have been a main focus of DM searches

- DAMA/LIBRA, CDMS, Xenonl10, CDMSII, Xenonl100, LUX, Fermi GST...

27
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e Recoil off atomic nuclei (electrons)

Direct WIMP DM Searches

WIMP-nucleon Gg; [cm?]
= =
5 5

10—47%

E. Aprile et al. [XENON Collaboration], Phys. Rev.

Normalized

10!

10°

10—] 111

10!

10°
WIMP mass [GeV/c?]

LuR

DM SM

DM SM

10!

L1 1 I
102
WIMP mass [GeV/c?]

Lett. 121, no. 11, 111302 (2018)

Q: Why do the constraints get weaker towards lower and higher DM masses?
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Other avenues for WIMP search:

e Indirect searches: self-annihilation signals
- Related to thermal relic density
- Complicated by astrophysical backgrounds

FGST

FERM1 GAMMA-RAY SPACE TELESCOPE

e Collider production: LHC
- Search for missing energy in events

DM

DM

DM

DM

A
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Dark Sectors and Dark Forces

For example: Arkani-Hamed, Finkbeiner, Slatyer, Weiner, 2008

e DM may reside in a separate sector with its own forces
e Analogy with SM

e DM interactions with SM are indirect

e Simple example: a “dark” sector U(1)y

e Mediated by vector boson Z; of mass myg, coupling gy

e my S 1 GeV has been invoked in various contexts
e DM interpretation of astrophysical data

e EXplaining muon g — 2
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Muon g — 2
e [ here are some experimental hints for deviations from the SM

e A significant one is the apparent tension between SM prediction and measured
muon g — 2

;= eig (Magentic dipole moment, lepton mass my, spin S)
my
o
g=72 <1 -+ > + .. ) (J. Schwinger, 1948)
7

e Long-standing Brookhaven experimental results*® recently confirmed by an ongoing
measurement at Fermilab Phys. Rev. Lett. 126, 141801 (2021)

* Phys.Rev.D73:072003,2006

e A set of precision calculations suggest a 4.2¢ deviation, (251 + 59) x 1011,
averaging Brookhaven and Fermilab results, but status of SM prediction is still
under scrutiny

e [ he results could be pointing to new phenomena
e Stay tuned over the coming few years

e Upcoming lecture by W. Morse will provide many more details

31



Invisible Z; and Low Mass DM Production

e Possible production and detection of DM beams in experiments

Batell, Pospelov, Ritz, 2009 (p beam); Izaguirre, Krnjaic, Schuster, Toro, 2013 (e beam dump)

e Interesting probe of GeV-scale DM (challenge for direct detection)

Detector
Target [ )
e
e Beam DM (Z_, Deca DM
—— H( i & - <
— oM
(Zd Production) . ) -
Shield (Earth) (Z, Medaited DM Scattering)

Motivated a search at Fermilab:
“Dark Matter Search in a Proton Beam Dump with MiniBooNE”

A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration], Phys. Rev. Lett. 118, no. 22, 221803
(2017)
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Concluding Remarks

Standard Model and GR successfully describe wide range of phenomena.
e Higgs boson discovered at LHC, appears to complete SM
e Some potential deviations in current data

e In particular, muon g — 2 could be hinting at new physics; more data and further theory investi-
gations are needed

SM conceptual difficulties: hierarchy (Higgs mass ‘“naturalness”),. ..
e No firm evidence for any new physics associated with a “natural’ Higgs mass
e Perhaps still early, but new organizing principles may be needed

Empirical shortcomings: neutrino masses, dark matter, baryogenesis, ...
e Neutrino mass generation: requires physics beyond SM, but typically elusive
e Dark matter: robust gravitational evidence for new physics, potentially accessible
e WIMP dark matter: Motivated by ‘“naturlaness” of my (under strain)

e Wide range of other possibilities for DM currently viable
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