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Outline
• In this lecture we are going to learn the basics of how to analyze detector functions.  

1. We will learn the basics of how a photomultiplier tube works. This is a very important sensor.  The electrical 
signal out of a PMT has been analyzed in a separate lectures.  This will focus on the statistics.  

2. We will derive the expected charge spectra for photo-multiplier tubes.  The techniques can be applied to other 
detectors as well.

3. We will learn about the statistics of gain through multiplication.  

4. We will also learn about time measurement and its resolution from such devices.   

5. And we will  learn about statistics of a counting process.  

6. To derive these we will need some powerful mathematical tools.  We will get an introduction to these tools.  

• The assumption in these slides is that we have integrated the charge coming from a PMT. The only sources of noise 
is the PMT itself.  

• Reference: See the guide from Hamamatsu, Photomultiplier tubes: Basics and Applications (2007) 3rd edition.  There 
are many papers in journals such as Nuclear Instruments and Methods.  

This is a lot, but I will provide all materials. About 20-30% of this is original and rest 
can be found in textbooks.  
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Photo-Multiplier Tube

• The photoelectric effect(Hertz 1887!) causes metals to 
eject electrons in response to light.  

• Einstein’s Nobel prize was for explaining the 
photoelectric effect with quantum mechanics !   

• Electric fields accelerate and multiply the primary 
electron in several stages. Each stage has 
multiplication of ~4-5.  

• Typical Gain = A* Vn ~ 106- 107 where V is the typical 
voltage ~ few 1000 V. 

• Time resolution < 10 ns.  From varying transit time.   

• Transit time can be <1 microsec 

• PMT first stage is sensitive to small magnetic fields.  

• Many clever geometries. 

Photon

From Hamamatsu
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These are a couple of typical single pe pulses.  Red is with a short cable, and Blue is with a 40 
meter RG316 cable. A cable will smooth out a pulse and reduce its amplitude. What happens to 
the charge ?  

We are going to integrate pulses like these to get the total charge.  

The time is obtained by looking for the pulse to go above threshold.  Typically this is set to see 
a single photo-electron.  We will deal with time resolution and counting later in this lecture.  

Q ≈
−0.007 Volt × 5 × 10−9 sec

50 Ohm
= 0.7 pC

4 million electrons

Threshold

Time 
measurement
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R has two grandparents. Each is going to give R some money for her birthday. $10, $20, 
$30, or $40 with probability of 0.1, 0.2, 0.3, 0.4.  What is the probability that R gets a total 
of $50 ? 

How do we make a method that provides an answer quickly ? It is called a characteristic 
function.  It keeps track of numbers. Gauss described this as a clothes-line to find the 
number that you need.  

ϕ(s)R = 0.1e10s + 0.2e20s + 0.3e30s + 0.4e40s

To get the total you multiply the char. functions.  

ϕ(s)R1+R2 = (0.1e10s + 0.2e20s + 0.3e30s + 0.4e40s)2

ϕ(s)R1+R2 = 0.01e20s + 0.04e30s + 0.1e40s + 0.2e50s + 0.25e60s + 0.24e70s + 0.16e80s

Notice that you can just read off the probability that R gets $50 

The characteristic function always exists and encodes all information about a 
probability density. 
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Some definitions 
•    —  Continuous random variable with probability density    

•    is the characteristic function.  

•  is a realization of  over the its domain.   is the expectation value its argument.  

• Some special points  

• The characteristic function tags the probability at  with a unique identifier  

• If all the probability is only at some value , for example then   

•  since it is simply the total probability   

• ;   higher derivatives lead to high moments.   

• Imagine  are two random variables and  then the characteristics function for Z is  

•  => for  then  

X PX(x)

φX(k) ≡ E[eikx] = ∫
+∞

−∞
PX(x)eikxdx

x X E[]

x eikx

x = 5 φX(k) = eik5

φX(k = 0) = 1

⟨x⟩ = − i
∂φ
∂k

(k = 0)

X, Y z = f(x, y)

φZ(k) = ∫ ∫ eikf(xy)PX(x)QY(y)dxdy z = x + y φZ(k) = φX(k)φY(k)
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Basics of photomultiplier charge
Mean of λ photo electrons come from the photo-cathode to the first dynode.  

Each electron generates 𝛼 electrons at the first dynode.  

Each subsequent stage produces gain of few electrons per incoming electrons leading to 
gains of ~106-7 after ~10 stages 

photocathode 
mean λ photo-electrons

𝛼 electrons per 
incoming electron

We are going to assume that the stages after the first stage do not contribute to the variance of the gain.  This is a 
good assumption as long as the gain at the first stage is reasonable > 3.  We will deal with this later. 

If mean of λ photons convert in a photo-sensor with a mean gain of 𝛼 electrons per photon what is the distribution 
of the output number of electrons ?

Basically, an average of λ packets arrive each with an average of 𝛼 items in each packet.  What is the mean and 
variance of the total number of items ? How do we calculate this… 

Gain at a 
Dynode 
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Poisson probability mass function and its Char. function 

• Incoming photoelectrons are Poisson distributed with mean ;     is the number of electrons  then  

•  

This has a characteristic function   

This looks crazy, but remember that it is just a sum with each probability labeled.   

• For the first stage the gain is also Poisson distributed with mean ;   is the number of secondary electrons 

And so we have two characteristics functions:    

Also recall:   mean for Poisson with parameter :     

  variance for Poisson with parameter :     

λ K

PK(k) =
λke−λ

k!

φK(s) =
∞

∑
k=0

eisk λke−k

k!
= eλ(eis−1)

α L

φK(s), φL(s)

λ E[k] = λ
λ E[k2] − (E[k])2 = λ
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Debatable points
• Why should the number of ejected electrons from the photo-cathode be Poisson distributed ? 

• Recall that only a small fraction of total photons from a scintillation event are caught by the 
PMT, and then with an efficiency of 20-30% converted to electrons.  And so this is a Poisson/
Binary process. The result is a Poisson distribution for the photo-electrons. 

• Why should the emission from the first dynode be Poisson distributed ?

• If the dynode is uniform then only a small fraction of total excitations from a penetrating 
electron results in an emitted electron.  However, there could be many geometrical reasons why 
the dynode response is not uniform. For example, an electron could miss a dynode entirely.  

• We are also going to do the calculation assuming a normally distributed gain.  This is good 
enough for most cases when the gain from the first dynode is high.  

• And so both of these are reasonable assumptions for well performing detectors in normal 
situations.  
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Simple calculation of mean and variance 
•    are the Poisson parameters for the incident photoelectrons and the first stage gain. Total charge 

random variable  will be called  
• Obviously,      

    where  is the random number of incident photoelectrons and  is the random number of 

secondaries for each photoelectrons.   

   

 

suppose  is actually Normally (Gaussian) distributed with parameters    (mean) and  (standard deviation)   

   

 

λ and α
Q

⟨Q⟩ = λ × α

Q =
K

∑
i=1

Li K Li

Var[Q]
⟨Q⟩2

=
Var[K]

⟨K⟩2
+

1
K

Var[L]
⟨L⟩2

=
1
λ

+
1

λ × α

Var[Q] = λα(α + 1)

L α σ

Var[Q]
⟨Q⟩2

=
1
λ

+
1
λ

σ2

α2

Var[Q] = λ(σ2 + α2)
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Now calculate the PDF for the total charge
• Total charge Z   (or Q)  is a discrete random variable     

          This is a sum of K random numbers.  K itself is a random number.  

There is often a naive mistake made here.   The total charge is not the product of two random numbers (K,  L)  

We want the PDF for the random variable   Z.     

If  were a fixed number then the C.F. for Z is simply       (recall that the for sums of random numbers 
the characteristic functions are multiplied. )   

Since  is a random number we have to take the expectation value of   with respect to K.  (law of total 
expectation).  

 

Z =
K

∑
i=1

Li

K = k φL(s)k

K φL(s)k

φZ(s) =
∞

∑
k=0

φL(s)kPK(k)
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C.F.  expressions for Poisson and Normal gain

• For Poisson gain with parameter :         

• For Normally distributed gain :      

•Using the above we get the characteristic function for the total charge Z  
For Poisson gain:  

 

For Normal Gain:  

 

α φL(s) = eα(eis−1)

N(μ, σ) φL(s) = eisμ × e
−s2σ2

2

φZ(s) =
∞

∑
k=0

(eα(eis−1))k λke−λ

k!
=

∞

∑
k=0

ekα(eis−1) λke−λ

k!

φZ(s) =
∞

∑
k=0

(eisμe
−s2σ2

2 )k λke−λ

k!
=

∞

∑
k=0

eiskμe
−s2kσ2

2
λke−λ

k!
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Probability densities for Poisson and Normal gain for signal only
We have not added the noise and dark rate to the formula yet. And so this is just a 
middle step. To do this we just take the inverse transform of the previous C.F.   

• For Poisson gain (This is called the compound Poisson or Jumping Poisson, etc.  )   

 

• For Normal gain the formula needs some care because charge z is now a continuous variable (can be 
negative). But there is no physical way for charge to be negative here.  We will deal with this shortly.   

 

PZ(n) = e−λ +
∞

∑
k=1

e−kα ×
e−λλk

k!
for n = 0

=
∞

∑
k=1

e−kα(kα)n

n!
×

e−λλk

k!
for n > 0

PZ(z) = e−λ+ for z = 0
∞

∑
k=1

1

2πσ2k
e− (z − kμ)2

2σ2k ×
e−λλk

k!
for z ≥ 0
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Pedestal, noise and background

The baseline fluctuates  
producing noise. When this 
is summed it will contribute a 
Gaussian distributed charge.  
The baseline could be shifted 
and has a fluctuation. 
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This is a typical 
pulse to be 
integrated to 
produce the total 
signal charge 

• We have to now include noise and background dark rate in the description of the charge.  

• The fluctuation of the baseline due to electronic noise and pickup noise will introduce a Gaussian width with 
some pedestal shift.  

     this has the CF  

Thermal emission of real electrons from metals inside the PMT is also a contributor. This is called dark rate 
and the charge is exponentially distributed, but there is a chance that there is no emission at all.   

   this has the CF 

PQ(x) =
1

2πσ2
0

× e
− (x − q0)2

2σ2
0 φQ(s) = eisq0 × e

−s2σ2
0

2

PD(x) = (1 − w)δ(x) + wθ(x)c0e−c0x φD(x) = (1 − w) + w
1

1 − is/c0
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Total response
To get the complete response we have to get the PDF for Y  =  B + Z  where 
B is the background and Z is the signal.  B = D +Q as we calculated for the background. 
and so 
ϕY (s) =ϕZ (s) iϕD (s) iϕQ (s)

ϕY (s) = (eisµk i e
− s

2σ 2k
2 )

k=0

∞

∑ i
e−λλ k

k!
⎛

⎝⎜
⎞

⎠⎟
× (1−w)+w 1

1− is / c0

⎛
⎝⎜

⎞
⎠⎟
× eisq0e

−1
2
σ 0

2s2

This is the full and complete expression for the PMT response assuming the gain is 
normally distributed.   We will break this up in 6 pieces and analyze it for special 
conditions.  

ϕY (s) = e−λλ k

k!
(eis(µk+q0 ) i e

− s
2 (σ 2k+σ 0

2 )
2 )

k=0

∞

∑
⎛

⎝⎜
⎞

⎠⎟
× (1−w)+w 1

1− is / c0

⎛
⎝⎜

⎞
⎠⎟
× eisq0e

−1
2
σ 0

2s2

We break this up in three cases for p.e. count: k = 0,  k = 1,  and k >1
And additional two cases  for  (1-w),  without dark rate 
and (w),  with dark rate addition.  
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Gaussian-modified-exponential 
A normally distributed random number with an addition of an exponential 
random number is called an exponential-Gaussian or Gaussian-exponential. 
The characteristic function is 

ϕEG (s) = eisq0e
−1

2
σ 0

2s2

(1− is / c0 )
The PDF that corresponds to this is 

PEG (x) = c0

2
e
c0

2σ 0
2

2 e−c0 (x−q0 )Erfc 1
2

c0σ 0 −
x − q0

σ 0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

Recall that c0  is the constant for dark rate, σ 0  is the std. dev. of the pedestal and 
q0  is the pedestal.  
Erfc[x]  is the complement of the error fuction.  

Erfc[x]= 1− Erf [x]= 2
π

e− t
2

dt
x

∞

∫
When c0σ 0  is small the Erfc acts like a step function. 
Some care is needed in calculation in case of negative 
or very large arguments. 
The Mean of the PDF is (q0 +1/ c0 ) 
The Variance is (σ 0

2 +1/ c0
2 )

0 50 100 150 200

0.000
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0.015
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Couple of definitions

Let's define some PDFs to get a compact expression 
The Normal PDF

N(x :µ,σ 2 ) = 1
2πσ 2

 e
− (x−µ )2

2σ 2

The Exponential modified Normal PDF

EN (x :µ,σ 2,λ) = λ
2
e
λ2σ 2

2 e−λ (x−µ )Erfc 1
2

λσ − x − µ
σ

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

µ :    mean of the Gaussian 
σ 2:     variance of the Gaussian
λ:     exponential decay parameter 
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All terms broken out for the characteristic 
function. Check that when s=0 the sum adds to 1  

Terms (1−w)× w ×

e−λ × eisq0e
− s

2σ 0
2

2 eisq0e
− s

2σ 0
2

2 × 1
1− is / c0

λe−λ × eis(µ+q0 )e
− s

2 (σ 2+σ 0
2 )

2 eis(µ+q0 )e
− s

2 (σ 2+σ 0
2 )

2 × 1
1− is / c0

e−λλ k

k!
×

k=2

∞

∑ eis(µk+q0 )e
− s

2 (σ 2k+σ 0
2 )

2 eis(µk+q0 )e
− s

2 (σ 2k+σ 0
2 )

2 1
1− is / c0

all these are to be added together. When transformed to PDF, each term 
will convert to a normal PDF or an exponential-normal PDF. 

no signal

single pe

many pe

no dark 
current

with dark 
current

18



All terms broken out for the PDF in compact notation 

Terms (1−w)× w ×
e−λ × N(x :q0,σ 0

2 ) EN (x :q0,σ 0
2,c0 )

λe−λ × N(x :µ + q0,σ
2 +σ 0

2 ) EN (x :µ + q0,σ
2 +σ 0

2,c0 )

e−λλ k

k!
×

k=2

∞

∑ N(x :µk + q0,σ
2k +σ 0

2 ) EN (x :µk + q0,σ
2k +σ 0

2,c0 )

all these are to be added together to get the full PDF. 
The sum is applied across the row. 

no signal

single pe

many pe

no dark 
current

with dark 
current
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Plot some examples

plot λ w q0 σ 0 µ σ c0
1 3 0.3 1 0.2 5 2 10
2 3 0.3 1 0.5 5 2 10
3 3 0 1 0.2 5 2 10
4 6 0 1 0.2 5 2 10

with dark current, narrow/wide pedestal

no dark current, less/more p.e. 
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Example where the gain has a narrow  variance; and individual 
photoelectrons can be separated and counted. 
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The probability of dark pulses is set to zero,w=0. The values of other parameters are set to beλ=5(mean photo-
electrons),q0=1(baseline shift),σ0=0.2(baseline fluctuation),μ=5(mean gain),σ=0.5, 1, 2(gain fluctuation) for the 
magenta-dashed, green-dashed, and blue-solid curves, respectively

σ = 0.5,1,2 for red, green, blue
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A detailed fit to data.  

The data contains 5000 pulses. The 7 parameter fit 
resulted in a reduced χ2/DOF=1.08 for 77 DOF. The 
parameters extracted were the baseline shift 
q0=0.044±0.031pC, the baseline fluctuation 
σ0=0.169±0.018pC, the dark rate probability 
w=0.30±0.12, the dark rate exponential parameter 
c0=2.1±2.1pC−1, the mean gain μ=2.59±0.06pC,the 
gain fluctuation σ=0.826±0.057pC and mean 
number of photo-electrons λ=2.69±0.10. The figure 
shows the best fit curve (red) as well as individual 
components of the spectrum: the charge spectrum 
for no photo-electron emission (brown dashed) 
shows a small dark rate component as a tail on the 
positive side; the single photo-electron spectrum 
(black dashed), a two photo-electron spectrum 
(black dotted), and greater than two photo-
electrons (blue dashed) are shown separately

• I have provided some data from a HPK R5912-mod 10 stage PMT.  It has very low dark rate. An LED was flashed thru 
a fiber at the PMT.  

• Data was taken with a scope and so the pedestal noise is very low also.
• There has been no selection of data. 5000 pulses were integrated in a fixed time interval and the LED pulse charge 

plotted with no cuts.    
• Homework:  fit the 6 spectra I have provided.  
• https://www.phy.bnl.gov/~diwan/software/pmt-spec-code-and-data.tar
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How to calculate the gain distribution from a single photo-electron ?

Or the statistics of electron multiplication. 

• The solution is a couple of iteration equations. These can be applied to any gain PDF.   

1.         ….    Assumed Poisson stage gain for each stage 

2.       

•  To perform the calculation start with the evaluation at 0 and proceed to n=1, 2, 3, for each stage;  
error is introduced because for each stage we must cut off n at a finite value.   It can be kept small.    

• There is a lot of literature on this, even recently, but there is also a lot of confusion over nomenclature.  

• Ref:  Lombard and Martin, Review of Scientific Instruments, Vol 32, Feb 1961

Pstg(0) = P1(Pstg−1(0)) = e−λeλ×Pstg−1(0)

Pstg(n) =
λ
n

n−1

∑
i=0

(n − i)Pstg(i) × Pstg−1(n − i)

P(1) =1
PK(k)

P1(k)
PK(k)

P2(k)
PK(k)

P3(k)
PK(k)

PNstage(k)
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Gain calculation for single pe using Poisson gain at each stage 
Only up to stage 5.   
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• For modest stage gains there is a substantial possibility 
of getting a zero (or no signal) > 


• To get close to a Normal PDF, need to get a first stage 
gain of > 4 

e−λ
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Time probability distribution and resolution  in scintillation counters. 

• Scintillation counters often are coupled to photo-multipliers.  

• Scintillation photons have an exponential probability density distribution in 
time.  

• A collection of n scintillation photons, each independent, will form a time series. 
Such a series will form a signal from a photo-multiplier tube.  

• For our purposes here, we will assume that the detector has fast time response, 
and low noise. When we measure the time of the pulse, it is essentially the time 
of the first photo-electron  in the time series of n photo-electrons 

• Time resolution from such a device will have 3 components:  1) fluctuation in the 
time of the photon, 2) fluctuation from transit time spread, 3) fluctuation from the 
gain process in the PMT.  

• For the time PDF,  We will combine (2) and (3) into a single Normal distribution. 

Photons

cathode

electrons

first dynode

Photo-electrons from 
the cathode will arrive 
at different times at the 
first dynode where they 

are multiplied

25



Time resolution formula.  
Proof can be found in my detailed notes.  

• If  is the PDF of events in time, then  is the cumulative probability that  

• If there are  events then the PDF for the minimum is given by 

 

for an exponential PDF for X,      

The time resolution improves as  

We have to convolute this with Gaussian resolution due to noise and transit time spread.  
We also have to include the Poisson probability for n events.  

PX(t) FX(t) = ∫
t

0
PX(x)dx (X ≤ t)

n
PT(t) = nPX(t)[1 − FX(t)]n−1

PT =
n
τ

e−nt/τ

σ = τ/n
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The answer for the distribution of first photon time including the effects of noise
is now given by  

Probability(t or no-t)     =   
e−λ     for no definite event time. 

e−λ λ
n

n!
× EN (t :0,σ 2,n /τ ) when there is a time

n=1

∞

∑

⎡

⎣

⎢
⎢
⎢

We plot this for some examples.  We set τ=6;  σ =0.5,  2 and λ=1, 2, 5
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σ = 0.5
λ = 1,2,5 for
blue, red, green.  
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σ = 2.0
λ = 1,2,5 for
blue, red, green.  

Notice how there is a tail for low number of photons. We leave it to 
the reader to calculate the mean and variance of these.  27



Random processes and Pulse Counting in typical experiments
Using a thresholding algorithm 

• In typical experiments, such as accelerator or underground radiation 
counters, we count events after some processing.   

• A continuous measurement in time may contain a signal as pulses, and 
some random noise.  A simple pulse finding method will count a signal 
pulse when the measurement makes a transition from low to high 
across a given threshold.   

• The statistics of such a thresholding filter are non-trivial, but 
calculable under some assumptions.   

• We will do a few calculations for reference. This is actually a subject of 
interest in both the statistics and electrical engineering communities. 
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• First we will do some simple stuff covered in textbooks (see Glen F. Knoll, for example).  Feller (1948) Courant 
Lectures has a complete description.  Feller originally identified these are Type 1, and Type 2 processes.  

• Let’s imagine that there are  real events in a unit of time.  

• The pulse that is produced and used for counting has a holding time (width) of  …. And  pulses are actually 
counted.   

• The relation between  depends on the nature of the pulses:  if the filter produces pulses of arbitrary length 
(thus not counting events when the events are closer than the resolving time) then it is called paralyzable.  If the filter 
produced pulses of fixed length no matter what then it is called Non-paralyzable.  

• The real situation can be more complex and could be based on the shape of the event pulse.  But these are useful 
extremes to analyze.

n
τ m

m < n

7 Actual counts

4 counts in 
Paralyzable 

mode

5 counts in Non-
Paralyzable mode

τ
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Non-paralyzable (Type 1) and Paralyzable (type 2) dead time loss
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• For a randomly distributed event rate of  what is the probability density function for the time 
intervals between events ?   

• Non-paralyzable dead time formula:   

• Paralyzable dead time formula:   

r
Pgap(t) = re−rt

m =
n

(1 + nτ)
m = ne−nt

m

n
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More generally:  what can we monitor to make sure the 
detector and pulse counting system are working as intended ?  

• Clearly we cannot monitor the ratio  since we do not know  

• We could make a plot of the rate  and make sure it stays constant if that is what we 
expect in a data taking run.   

• We could plot the width of the pulses, the minimum will be  and then it will drop with 
some PDF.  This PDF is known, what is it?  

• We could plot the time between the edges of the pulses ?   This would be called the 
renewal time distribution.  This is actually the best monitor for each channel and also 
for the trigger.  It should be exponential except for small times where it will deviate 
because of dead time.  

• What if the rate  is not random in the sense of a Poisson process ? What if some of 
the rate is correlated. e.g, the pulses are more probable if they are close to each other.  

m/n n

m

τ

n
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Simulation of renewal times and pulse widths 
1 Hz,   holding time = 0.5 sec

• You can find the proof of how to analytically calculate the renewal time PDF from Feller.  

• You can also take a lecture on Renewal theory from MIT opencourses.   

• Type 2 renewal times get pushed out longer because of the multiple overlapping pulses.  

• Plot on right:  The minimum pulse width is 0.5, When there is another pulse within 0.5 
sec, this extends to 1 sec, a third pulse has to be present within the second 0.5 sec 
internal. Therefore there will be lower probability >1 sec. 
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Conclusion. 
• We derived the full expression for the charge spectrum from a typical photo-multiplier.  

• The expression has parameters for the pedestal, width of the pedestal, the dark current, and 
the signal.  Expression assumes that gain has a Gaussian PDF. 

• The method for deriving the expression is very general, and can be applied to any detector 
system with appropriate changes.  

• We also understood how to obtain the PDF for gain using similar techniques.  

• We examined  time resolution as well as the statistics of counting from detectors. 

• I wrote a paper last year with more detail.  https://arxiv.org/abs/1909.05373 

• Also look at https://www.phy.bnl.gov/~diwan/#photo for much more details. 
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