

Update on simulations from the University of Birmingham

P.P. Allport, L. Gonella, P.G. Jones, P.R. Newman, <u>S. Maple</u>, H. Wennlöf 25th of May 2021

Overview

- 1st created analysis code to analyse Fun4All output and benchmarked against results of YR Hybrid Concept
- 2nd updated the field map from uniform to 3T solenoid field map (2021-4-30 Bmap)
- 3rd Implemented a Si+TPC hybrid configuration using simplified geometry implementation from Rey Cruz-Torres

YR Hybrid Baseline – Benchmarking against existing results*

- Studies performed with positive pions
 - $0 \le p_{T} \le 30 \text{ GeV/c}$
- Pseudorapidity intervals of:
 - -1.0 ≤ η ≤ 1.0
 - ⁻ 1.0 ≤ η ≤ 2.5
 - ⁻ 2.5 ≤ η ≤ 3.5
- Uniform Fields of 1.5 T and 3.0 T

$$\frac{\sigma_p}{p} = A \cdot p \oplus B$$
$$\frac{\sigma_{xy}}{p_T} = \frac{A}{p_T} \oplus B$$

* See slides from H. Wennlöf https://indico.bnl.gov/event/7919/

$-1.0 \leq \eta \leq 1.0$

$1.0 \leq \eta \leq 2.5$

Note that the requirements from the physics working groups have changed since the Nov 2020 plots were made

5

$2.5 \leq \eta \leq 3.5$

Note that the requirements from the physics working groups have changed since the Nov 2020 plots were made

6

Updated Field Maps

Relative Momentum Resolution for Hybrid Baseline

- "Field Maps circulated for EIC Solenoid (3T maximum field)
- Benchmarked against 3.0 T Uniform field used in YR Hybrid studies

Updated Field Maps

- Field Maps circulated for EIC Solenoid (3T maximum field)
- Benchmarked against 3.0 T Uniform field used in YR Hybrid studies

Simplified Silicon Hybrid Implementation

- Studies performed with positive pions
 - 0 ≤ p_⊤≤ 30 GeV/c
- Pseudorapidity intervals of:
 - -1.0 ≤ η ≤ 1.0
 - ⁻ 1.0 ≤ η ≤ 2.5
 - 2.5 ≤ η ≤ 3.5
- 3T solenoid field map used
- X/X0 = 0.05%, 0.55%, and 0.24% in vertexing layers, barrel layers, and disks respectively
- Benchmarked against YR Hybrid baseline setup

*Note that TPC endcaps were not included in these simulations

Relative Momentum resolution

$\textbf{-1.0} \leq \eta \leq \textbf{1.0}$

2.5 ≤ η ≤ **3.5**

 $1.0 \le \eta \le 2.5$

Some discrepancy found in the forward region

 \rightarrow possibly because edges of disks are rounded rather than being squared off as in the stave based model

Transverse Pointing resolution

 $-1.0 \le \eta \le 1.0$

Summary and Next Steps

- Analysis method produces results consistent with those from YR
- 3T Solenoid field map implemented and benchmarked against Uniform 3T field → similar results
- Simplified geometry implemented and produces results matching YR Hybrid configuration in all but highest pseudorapidity region
 - Discrepancies to be investigated further (Run again with TPC endcaps, plot resolutions as a function of pseudorapidity, material scan)
- Next step is to switch out the TPC for MPGD and GEM in the barrel and endcaps respectively (geometry implementation from Matt, Nick, Athira, Merrick)

Backup Slides

0

Resolution Requirements

Tracking requirements from PWGs						
			Momentum res.	Material budget	Minimum pT	Transverse pointing res.
η						
-3.5 to -3.0					100-150 MeV/c	
-3.0 to -2.5	Central Detector	Backward Detector	σp/p ~ 0.1%×p ⊕ 0.5%	~5% X0 or less	100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 40 µm
-2.5 to -2.0			σp/p ~ 0.05%×p ⊕ 0.5%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm
-2.0 to -1.5					100-150 MeV/c	
-1.5 to -1.0					100-150 MeV/c	
-1.0 to -0.5		Barrel	σp/p ~ 0.05%×p ⊕ 0.5%		100-150 MeV/c	dca(xy) ~ 20/pT µm ⊕ 5 µm
-0.5 to 0						
0 to 0.5						
0.5 to 1.0						
1.0 to 1.5		Forward Detector	σp/p ~ 0.05%×p ⊕ 1%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm
1.5 to 2.0					100-150 MeV/c	
2.0 to 2.5					100-150 MeV/c	
2.5 to 3.0			σp/p ~ 0.1%×p ⊕ 2%		100-150 MeV/c	dca(xy) ~ 30/pT μm ⊕ 40 μm
3.0 to 3.5					100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 60 µm