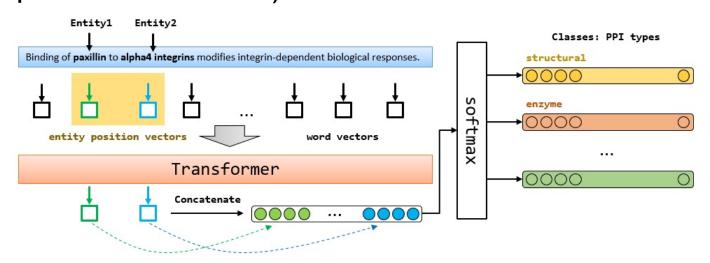
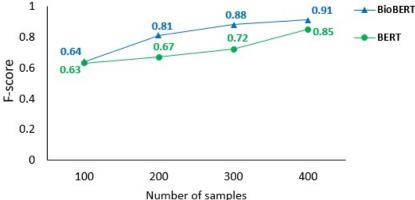
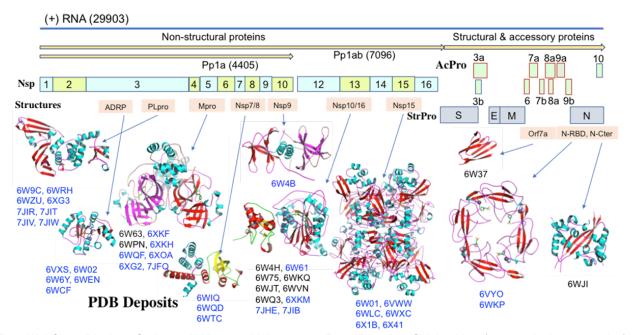
SDCC Liaison Meeting CSI

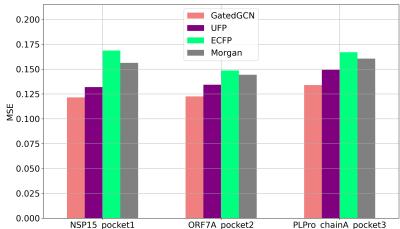

Yihui Ren yren@bnl.gov


Volta Partition

- Combat Covid (NLP and GNN)
- STLearn (AI for multivariable temporal learning)
- SciDAC-RAPIDS (climate science)
- SciDAC-HEP (cosmology)
- Advanced Data Acquisition LDRD (sphenix)

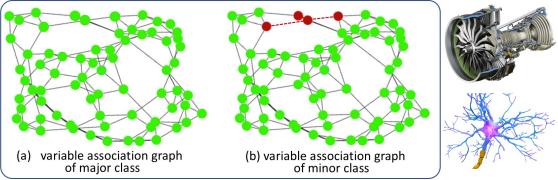
NLP: Named Entities Relation Learning from Literature


- Relational information is a foundation for knowledge base construction.
- Multi-stage learning is error prone.
- Joint learning in identifying named entities and their biological relationship (i.e., protein-protein interaction)

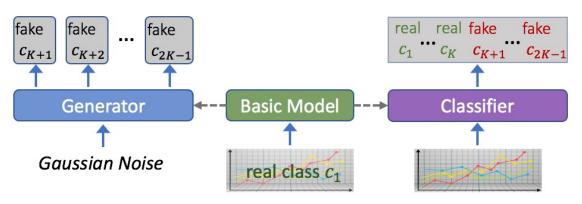


GraphNN: Molecular Fingerprints

- Trained on over 300K docking compounds and 18 covid-19 related protein sites.
- Fast and Learnable molecular fingerprinting method.
- Perform better than traditional methods.

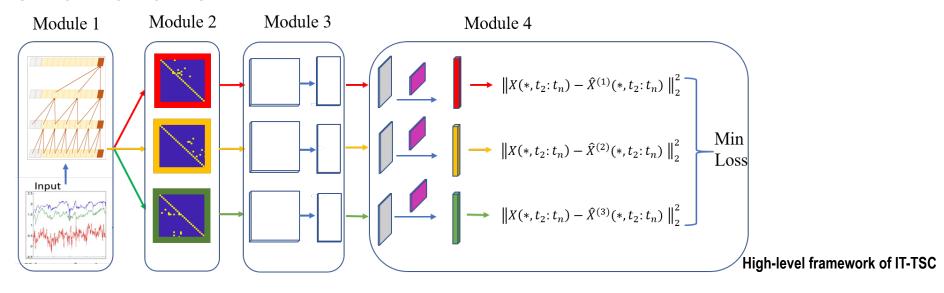


Target	Baseline	ECFP	Morgan	GatedGCN	GraphSAGE	MPNN
3CLPro_pocket1	1.830	1.132	1.115	1.031	1.096	1.061
$ADRP-ADPR_pocket1$	1.588	0.237	0.202	0.151	0.157	0.151
$ADRP-ADPR_pocket5$	1.584	0.237	0.200	0.149	0.156	0.153
$ADRP_pocket1$	0.544	0.115	0.109	0.085	0.092	0.087
$ADRP_pocket12$	0.544	0.116	0.109	0.085	0.091	0.086
$ADRP_{-pocket13}$	1.048	0.163	0.144	0.104	0.111	0.104
$COV_pocket1$	0.270	0.076	0.070	0.054	0.058	0.058
$\mathrm{COV_pocket2}$	0.271	0.075	0.069	0.055	0.058	0.057
$COV_pocket8$	0.872	0.178	0.162	0.125	0.133	0.127
$COV_{-pocket10}$	1.166	0.172	0.163	0.120	0.124	0.124
$NSP9_pocket2$	1.139	0.205	0.211	0.164	0.170	0.167
$NSP9_pocket7$	0.987	0.135	0.126	0.089	0.093	0.092
$NSP15_pocket1$	0.843	0.169	0.156	0.122	0.126	0.122
${ m ORF7A_pocket2}$	0.397	0.149	0.144	0.123	0.127	0.124
$PLPro_chainA_pocket3$	0.566	0.167	0.161	0.134	0.142	0.135
PLPro_chainA_pocket23	0.927	0.253	0.242	0.199	0.207	0.195
$PLPro_pocket6$	0.843	0.157	0.139	0.112	0.118	0.110
PLPro_pocket50	1.335	0.293	0.272	0.211	0.222	0.215


Yihui Ren, Wei Chen, Matthew Carbone, Ai Kagawa, Hubertus van Dam, Deyu Liu, Shinjae Yoo. (manuscript in preparation).

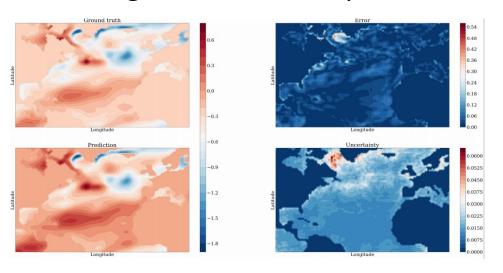
STLearning: Interpretable Temporal Generative Adversarial Networks (IT-GANs)

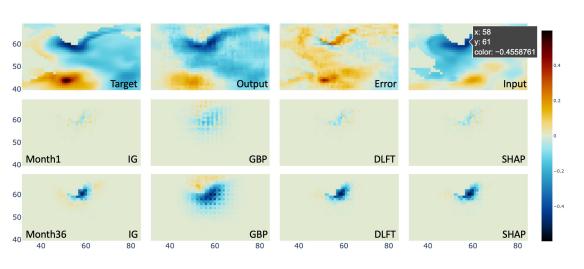
- Classifier: IT-GANs is a time series data classification algorithm with imbalance class distribution.
 - GAN is a powerful tool for such imbalance class distribution training.
- Interpretable: Identifies the difference among classes by learning an association graph for each class.
- Generative: IT can simulate system behavior using a generative model, which is helpful, especially for minor classes.



In variable association graphs. Each node represents a variable in a complex industrial system, and the edges indicate the association between two connected nodes. The edges in red indicate the association change in a minority class (right) compared with the majority class (left). Learning these unknown associations is crucial for understanding the behavior of system, but it also is challenging due to data imbalance.

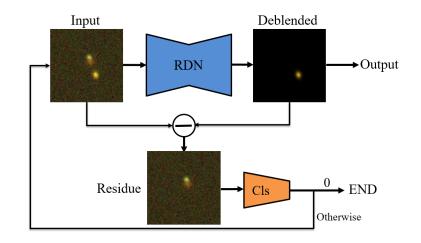
STLearning: Interpretable Time Series Clustering (IT-TSC)

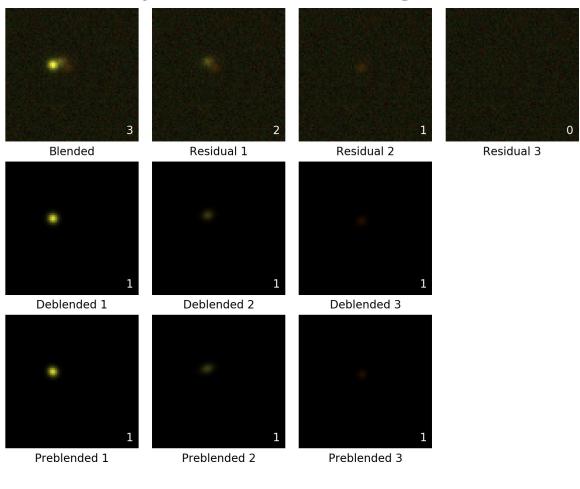

- Clustering and each cluster variable association graphs are explored together.
- Time series autoregression by a multi-path neural network, where each path corresponds to one cluster.
- The learned variable association graphs can be used to interpret how one cluster differs from another.



Publication: Hao Huang, Chenxiao Xu, Shinjae Yoo, "A Deep Neural Network for Multivariate Time Series Clustering with Result Interpretation." Proceedings of the 36th Annual ACM Symposium on Applied Computing. 2021

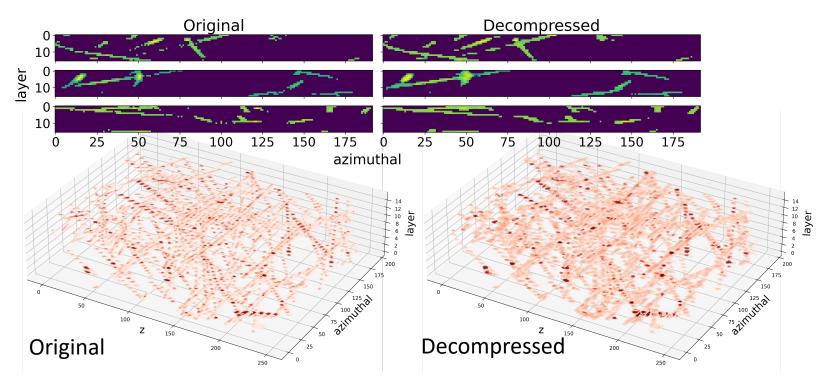
SciDAC-RAPIDS: Bayesian Neural Network and xAI on Climate Prediction

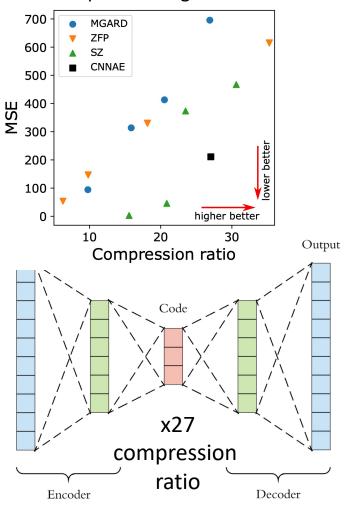

- Applied various xAI approach to understand temporal dependency behaviors.
- Discovered local interaction only and working on improving the model to capture longer-term dependencies.
- Bayesian Neural Network is also used to quantify uncertainties and also improved forecasting accuracies compared to non-Bayesian approach.



SciDAC-HEP: Iterative Galaxy Deblending

- Iteratively deblending one galaxy at a time.
- Deep residual dense network was used for one galaxy deblending.
- Classifier predicts how many galaxies are present and subtracts deblended galaxy if any are left.





SPHC

- 3D Sparse 10-bit TPC data.
- CNN auto-encoder with binary pixel-wise classifier.
- Offers better compression ratio and lower MSE

Comparing with other lossy compression algorithms

Yi Huang, Yihui Ren, Jin Huang "ML data compression and noise filtering for real-time computing" Workshop VIII on Streaming Readout

Thanks!

- Extremely fast response
- JupyterHub
- DockerHub