Welcome to the FarBackward Working Group:

Luminosity measurement and low-Q² tagging in ATHENA

FarBackward WG kick-off

Jaroslav Adam (BNL), Krzysztof Piotrzkowski (UCLouvain & AGH UST)

Description Join ZoomGov Meeting

https://bnl.zoomgov.com/j/1606097140?pwd=bXpOOS95VGQzaExrOVVTbThlYW5Qdz09

Meeting ID: 160 609 7140 Passcode: 893548

One tap mobile

+16692545252,,1606097140#,,,,*893548# US (San Jose) +16468287666,,1606097140#,,,,*893548# US (New York)

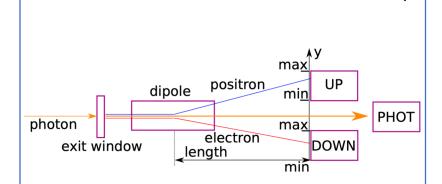
12:00 → 12:20 Introduction and outlook ¶

Speakers: Jaroslav Adam (BNL), Krzysztof Piotrzkowski (UCLouvain & AGH UST)

12:20 → 12:40 **Discussion**

12:40 → 13:00 Synchrotron radiation and design of beam-pipe exit windows

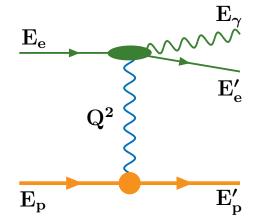
Speaker: Charles Hetzel (BNL)


We will meet weekly, at noon BNL time on Wednesdays:

This is important not only for "formal" presentations and topical discussions but also to ensure proper information flow as well as just to keep in touch – our project is very challenging and we need to prepare a strong proposal in short time

https://lists.bnl.gov/mailman/listinfo/eic-ip6-det-back-l (19)

FarBackward WG: First four meetings


Our first three meetings on May 26th, June 2nd and 9th will be dedicated to gathering all "up-to-date" information about "boundary conditions" for this project.

On June 16th we plan to hold a meeting where the outline of the Far-Backward project will be discussed and a very first workplan towards the FarBackward proposal presented

Introduction

June 2:

Synchrotron radiation and beampipe design Event pileup issues and mitigations

June 9:

Framework for the FarBackward simulations (fast vs. full MC)

Summary of the infrastructure/available space for our detectors

Short summary of first ideas regarding the "spectrometer dipole"

FarBackward WG: First organizational steps

FarBackward ATHENA detectors are very challenging and contributors to this project are very welcome — there are many important aspects to be covered!

Three candidates for representatives of the FarBackward WG to the ATHENA Proposal Group are proposed:

- Costing: Mariusz Przybycien (AGH)
- Integration: Jaroslav Adam (BNL)
- Editing: Krzysztof Piotrzkowski (AGH)

Open list of participants in various areas of the Far-Backward proposal

Integration with the EIC – J. Adam (BNL)

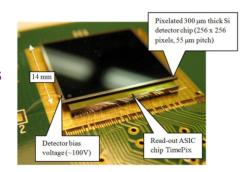
Electronics – Marek Idzik (AGH)

FarBackward system integration/technical coordination – Leszek Hajduk (IFJ)

Dipole magnet – NN (BNL), TBD

Spectrometer detectors – NN (BNL), TBD

Photon calorimeter – K. Piotrzkowski (AGH)


Tagging – Bill Schmidke (BNL) and K. Piotrzkowski (AGH)

Online data flow & processing – J. Adam (BNL) and K. Piotrzkowski (AGH)

Software – J. Adam (BNL), Janusz Chwastowski (IFJ) and M. Przybycien (AGH)

Glasgow - Timepix4 in a Far Backward Detector

- We (Glasgow group) are already involved in EIC (ATHENA and ECC medipix
 - But not yet focussed on any specific detector component
- Experience with detector development at Jlab, Mainz, Lund
 - Detector development, construction, slow controls
 - Data analysis, DAQ, simulation
 - Tagging
- Current projects with Timepix3
 - Polarimeter for lin pol photons
 - RFPMT for picosecond timing
- UK Infrastructures bid for EIC
 - Glasgow component:
 - to investigate Timepix4
 - for potential use at EIC

Timepix3

Timepix3 vs Timepix4

Timepix4: A 4-side tillable large single threshold particle detector chip with improved energy and time resolution and with high-rate imaging

with improved energy and time resolution and with high-rate imaging				
			Timepix3 (2013)	Timepix4 (2019)
Technology			130nm - 8 metal	65nm - 10 metal
Pixel Size			55 x 55 μm	55 x 55 μm
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448 3.5 x
Sensitive area			1.98 cm ²	6.94 cm ²
Readout Modes	Data driven (Tracking)	Mode	ТОТ	and TOA
		Event Packet	48-bit	64-bit 33%
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel 8x
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bl)X
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel a
		Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10° hits/mm²/s 8x
TOT energy resolution		lution	< 2KeV	< 1Kev
Time resolution			1.56ns	~200ps
Readout bandwidth		dth	≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)

- Could timepix4 have a role in a far backward detector
- or anywhere else at EIC?

Glasgow - Timepix4 in a Far Backward Detector?

- Q1 Which is the contributions you can bring to the Far-Backward activity towards the proposal in the next months?
 - Add Timepix4 / pixel detectors to simulation. (Already in progress Simon Gardner)
- Q2 What are the most relevant and urgent questions in the Far-Backward sector?
 - Decide optimal position / track / timing resolutions ?
 - What is available space, radiation environment?
 - Maximising angular acceptance at large eta
 - Costs
- Q3 How do you see globally Far-Backward project for Detector 1
 - Quasi real photon beam with high flux for meson photoproduction and spectroscopy
 - Suppression of backgrounds in hard exclusive photoproduction processes

Currently involved:

Daria Sokhan (UK EIC infrastructure bid spokesperson), Ken Livingston (Timepix3 + DAQ development), Derek Glazier (Simulation and analysis) Simon Gardner (simulation, Timepix3 analysis tools), Dima Manuelski (Medipix and Timepix Guru)

Daresbury Cross-community support group (Timepix3 readout and DAQ)

BNL-ATHENA: Far Backward

Active members: J. Adam, E. Aschenauer, W. Schmidke

- Q1: Which are the contributions you can bring to the Far-Backward activity towards the proposal in the next months?
- Members wrote Far-backward sections of CDR & YR, based on:
- Developed: full Geant simulation far-backward detector system, bremsstrahlung MC generator (J. Adam) (https://arxiv.org/abs/2105.10570)
- Participation with EIC design team since start: detector/IR integration (E. Aschenauer)
- Extensive experience all aspects:
 ZEUS@HERA-II lumi spectrometer (W. Schmidke)
- Older: EIC R&D eRD12: "Electron polarimeter, luminosity monitor, and low Q2-tagger", (R. Petti, left group)

BNL-ATHENA: Far Backward

Q2: What are the most relevant and urgent questions in the Far-Backward sector?

- Integration of backward system into IR, specify:
 - beam pipes, aperture limits
 - exit windows
 - synchrotron radiation field
- Define photon & electron apertures
 - ⇒ define beamline elements e.g. collimators, spectrometer dipole, ... define detector locations, sizes, parameters

Q3: How do you see globally Far-Backward project for Detector 1?

Extensive project experience in DOE framework, we are anxious to collaborate with interested institutions!

AGH UST and IFJ PAN in ATHENA: Far Backward

Members:

AGH UST: Marek Idzik, Krzysztof Piotrzkowski, Mariusz Przybycien IFJ PAN: Dariusz Bocian, Janusz Chwastowski, Leszek Hajduk, Rafał Staszewski

- Which are the contributions you can bring to the Far-Backward activity towards the proposal in the next months?
 - Coordination of the efforts toward the FB proposal.
 - EoI EIC Forward Instrumentation in the Electron Hemisphere
 - Experience from ZEUS@HERA (photon and electron tagging)
- What are the most relevant and urgent questions in the Far-Backward sector?
 - Establishing the good conditions for the precise luminosity measurement and photoproduction tagging – minimizing the direct synchrotron radiation and optimizing the exit window designs.
 - Establishing the optimal configuration of the luminosity detectors, for two
 complementary measurement techniques, including auxiliary detectors for calibration
 and diagnostics.
 - Preparing a framework for evaluation of the expected luminosity errors, as well as the tagging performance, for different running scenarios and as a function of detector parameters and configurations.

AGH UST and IFJ PAN in ATHENA: Far Backward

- Proposing adequate detector technologies for the FB system.
- Defining tentative requirements for the readout and DAQ electronics, including data (pre-)processing aspects.
- How do you see globally Far-Backward project for Detector 1?
 - Precise luminosity measurements are central for the physics program at the EIC, but are very challenging – the FB system requires an optimal design and dedicated instrumentation and variety of diagnostic tools
 - Photoproduction tagging is an important part of the exclusive physics program, but it also poses very serious experimental challenges
 - Possible significant support from the Polish Ministry of Education and Science toward building the Far Backward detectors.