# IP6 Compton simulation update

**Ciprian Gal** 





## 100% horizontal polarization (18 GeV)



|                   | polarization at Compton IP |                |
|-------------------|----------------------------|----------------|
| Beam energy [GeV] | Longitudinal [%]           | Horizontal [%] |
| 5                 | 97.6                       | 21.6           |
| 10                | 90.7                       | 42.2           |
| 18                | 70.8                       | 70.6           |

Last time I showed that we were effectively blind to the horizontal component of the electron polarization due to the dipole

-0.02

-0.04

-0.06

-0.08

0.1

-0.05

-0.05

-0.1

# 100% horizontal polarization (18 GeV)



- Before the dipole we can see that each energy "slice" has both positive and negative analyzing powers (separated by ~45um)
- As expected the distribution after the dipole shows a tight correlation with the horizontal position

\* Stony Brook University

# 100% horizontal polarization (18 GeV)



13000

12000

11000

0.04

1 02

- As expected the distribution after the dipole shows a tight correlation with the horizontal position
- Looking at similar resolutions after the dipole reveals that indeed the L-R asymmetry is preserved (at the level of 250um) for each energy "slice" but projecting it to the x axis will result in averaging of both positive and negative analyzing powers
  - Said another way each x position at the electron detector plane has both positive and negative analyzing powers



\* Stony Brook University

120 130 140 150

13000

12000

11000

-0.05

-0.1

-0.15

-0.2

180

#### Electron detector location: 18 GeV 18GeV eDet(9m) polXsec bQ9 pol Xsec In addition we should y[mm] kE [MeV 0.3 0.08 $\Delta x = 250 \text{ um}$ consider that for the actual -0.25 0.06 12385 0.04 configuration the LR 0.15 0.02 asymmetry will sit on top of a large variation from the longitudinal component 12380 -0.0212375 -0.04100% horizonta -0.06 -0.05 12370 71% longitudinal 128.6 128.7 128.8 128.9 -0.08 Looking at positional -0.1 110 120 130 140 information alone effectively 18GeV eDet(bQ9) polXsec hides the LR asymmetry of 71% longitudinal the horizontal component 0.25 0.2 - Potentially adding 0.15 F independent energy information could break this degeneracy but seems like a really difficult task

#### **Ciprian Gal**

Stony Brook University

0.15

0.05

-0.05

-0.1

-0.15

129.1



- If we take the electron position analyzing power mirror it and then scale it to fit the rho variable we can see that due to the non-linear correlation between position and energy the distribution is quite distorted
  - Is this related to the path through the quad? I'd expect we should be able to recover the proper longitudinal dependence but with an additional systematic penalty



### Photon detector distributions



- For the photon detector the asymmetry x dependence can tell us about the horizontal component even after some distortion due to the longitudinal component
- The longitudinal component is straight forward to determine from the energy measurement





### Photon detector needed resolutions: 18 GeV



- Following a similar procedure as Dave developed last year I sample from the asymmetry distribution (for 18 GeV) we see at the virtual plane and bin it such that it simulates different detector resolutions
  - The resulting distribution is fit with the ideal asymmetry shape obtained from the simulation
- Fitting the different "detector segmentations" shows pretty good determination of the horizontal components up to segmentations of 1mm

### Next steps

 Implement beam crossing and bunch shape effects into the simulation and evaluate impact

