Simulations in NC and CC at EIC

Xiaoxuan Chu ATHENA inclusive group 06/07/21

The work included in the following slides is from what I did for EIC yellow report

Simulations in NC through measuring outgoing electron

- Electron Identification
- Effect from kinematics reconstruction method
- Effect from EIC smear

Electron PID: Momentum distributions

ep collisions: $20 \times 250 \text{ GeV}$

 Hadron and photon suppressions are required in backward direction to ensure good electron identification.

NC: Kinematics reconstruction through e'

- Reconstruction replies on measuring E'_e and θ'_e after identification of the outgoing electrons
- Limitation: Resolution diverges at $y \rightarrow 0$, $\theta'_e \rightarrow 180^\circ$

Low y and high θ'_e

Outgoing electron hit map

y distribution map on electron

- $y \rightarrow 0$: electron energy is high; very backward direction
- Minimum y cut is required to ensure high resolution: widely used cut y > 0.01 at EIC

EIC Smear

Outgoing electron hit map

- Energy resolution -2< η < -1 ~ 0.07 at E > 2 GeV; -4.5< η < -2 ~ 0.01 at E > 2 GeV
- Energy resolution -1< η < 4.5 is not good: widely used cut y < 0.95 at EIC
- Energy resolution diverges at very low E

Smeared final electrons and kinematics

Kinematics of smeared electron

Kinematics of smeared x and y

Purity

- Purity is defined as the fraction of events reconstructed in a given x-Q² bin that were generated in the same bin
- It reflects the bin migration into a reconstructed kinematic bin (x_R, y_R, Q²_R) after including detector smearing effect

Simulations in CC through measuring hadronic system

- Radiation effect
- Jacquet-Blondel method: PID for hadronic system Detector acceptance
- Effect from EIC smear

DJANGOH is used for CC simulation

True level	trueX	trueY	trueQ ²	kinematic variables of the event at the hard scattering vertex, used to do impact study	Radiative correction
Radiative level	х	у	Q ²	calculated from neutrino	
Reconstructed level	X ^{rec}	y ^{rec}	Q ² _{rec}	reconstruct by Jacquet-Blondel method through hadronic final state to reconstruct kinematics	

Take radiative effect on y for explanation

	Energy of exchanged photon (E_{γ})	$y = E_{\gamma} / E_e$
Radiative level (y)	$E_{\gamma} = E_e - E_{e'}$	$(E_e - E_{e'})/E_e$
True level (trueY)	$E_{\gamma} = E_e - E_{e'}$ - radiative photon's energy	$(E_e - E_{e'} - radiative photon's energy)/E_e$

Radiative effect

Data sample : Int L = 10 fb⁻¹, Kinematics settings: 0.01 < y < 0.95, $10^2 \text{ GeV}^2 < Q^2 < 10^5 \text{ GeV}^2$

• Djangoh includes radiative effects (radiative vs true): in some events y is smaller than trueY; x is larger than trueX

Radiative effect

Radiative effect at x~>0.07

JB method: Final state particles Hit Map

- Final state particles: mainly in middle and forward direction
- Very forward particles with high momentum are produced from proton beam remnant

PID impact: final hadrons with full acceptance

PID impact: photons included

Detector acceptance effect $-\underline{p_z}_h$; Q²_{rec} Q_{JB}^2 x^{rec}= Final state p^{\pm} , K^{\pm} , π^{\pm} ,n and γ : **Perfect detector** Energy [GeV] کی 200 20 200 200 200 00 [GeV] 100 [GeV] 100 [GeV] 10 10⁵ 10⁵ Beam remnant Succession of the second se 10⁴ 10⁴ 10^{4} 10³ 60 10^{3} 10^{3} 100 100 10² 40 10^{2} 10^{2} 50 50 20 10 10 10 0 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10 -6 -4 -2 2 6 8 10 -10 - 8-10 - 80 Δ Detector accepted (-3.5 < η < 3.5) [140 120 100 100 p_T [GeV] (140 00 120 a[×]100 10^{4} 70 10⁴ 10^{4} 60 10^{3} 10³ 10^{3} 50 80 80 60 40 10² 10² 10^{2} 60 40 30Ē 20 40 20Ē 10 10 10 0 20 10 -20 16 2 3 2 3 3 -2 2 -4 -3 -1 0 -4 -2 0 4 -2 $^{-1}$ 0 4 4

Detector acceptance effect on kinematics $x^{rec} = \frac{Q_{JB}^2}{Sy_{JB}}; \quad y^{rec} = \frac{(E - p_z)_h}{2E_e}; \quad Q^2_{rec} = \frac{p_{t,h}^2}{1 - y_{JB}}$ Final state p^{\pm} , K^{\pm} , π^{\pm} ,n and γ : -3.5< η <3.5 tuno 10⁴ ∖ tuno 10⁴ tuno; 10⁴ - Reconstruct Radiative ^{10³ True} 10³ 10^{3} 10² 10² 10^{2} 10 Can be 10 compared with s15 to see 10³ 10^{-3} ³ 10⁴ 10⁵ Q² [GeV²] 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{-2} 10⁻¹ 10² 10-4 10-1 10 x impact from rapidity cut ${\rm Q}^2 \ {\rm rec} \ [{\rm GeV}^2]$ X^{rec} y^{rec} 10^{3} 10² 10^{2} 10-1 10^{2} 10 10 10-1 10^{2} 10⁻² 10 10^{-2} 10 10^{-3} 10^{-3} 17 $Q^{2} [GeV^{2}]$ ′10^{_3} 10^{-2} ′10^{_3} 10^{-2} 10^{3} 10^{-1} 10^{-1} 10^{2} 10 10 х

EIC Smear: detectors smear input

Photons

EMcal: -4.5 < eta < 4.5

Tracking: -3.5 < eta < 3.5

eta = -3.5 - -2.5: sigma_p/p ~ 0.1% p+2.0% eta = -2.5 - -1: sigma_p/p ~ 0.05% p+1.0% eta = -1 - +1: sigma_p/p ~ 0.05% p+0.5

Charged hadrons+neutrons

Hcal is -3.5 < eta < 3.5

eta = -3.5 - -1: sigma_E ~ sqrt(pow(0.06*E, 2) + pow (0.45,2) *E eta = -1 - 1: sigma_E ~ sqrt(pow(0.07*E, 2) + pow(0.85, 2)*E)

Smeared kinematics

Summary

Simulation studies in NC and CC channels are discussed

Not a full analysis of the physics observables; not a full detector simulation: EIC smear was used

Kinematics resolution can be smeared from several effects:

- Electron method: Electron PID, EMCal effect from EIC smear
- JB method: radiative effect, hadron + photon PID, detector acceptance, energy threshold (backup)

There are also other reconstruction methods not discussed: sigma method, double angle method...

Which effects need to be mainly focused on? What level of detector performance is needed?

Reduced cross section at true level with xfitter

- CC reduced cross sections measured at EIC agree with theory predictions and HERAPDF.
- Reduced cross sections on true level are used for impact study. EIC CC data reduce uncertainty
 of U at high x.

Energy threshold impact (1): $x^{rec} = \frac{Q_{JB}^2}{sy_{JB}}; \quad y^{rec} = \frac{(E - p_z)_h}{2E_e}; \quad recQ^2 = \frac{p_{t,h}^2}{1 - y_{JB}}$ EMcal E>100 MeV, Hcal E>250MeV, -3.5<eta<3.5 tunos _{10⁴} ⊾ tuno 10⁴ tuno 10⁴ Reconstruct Radiative 10³ True 10³ 10^{3} 10² 10² 10² 10 10 10 F 10⁻³ 10³ ⁾³ 10⁴ 10⁵ Q² [GeV²] 10^{-3} 10² 10^{-4} 10^{-2} 10^{-2} 10⁻¹ 10^{-1} 10-4 10⁻¹ 10 1 х ¹⁰⁵ Lec [GeV²] ¹⁰⁴ 10³ x^{rec} yrec 10^{3} 10² 10² 10^{2} 10-1 10 10 10 10² 10⁻² 10 10^{-2}

 10^{-3}

10

х

1

10⁻³

 10^{-2}

 10^{-1}

10-3

10⁻³

 10^{-2}

10-1

10

1

22

0² [GeV²]

 10^{3}

10²

10

Energy threshold impact (2):

EIC Smear: final particles kinematics

Smeared final particles kinematics: all final photon, pion, proton, neutron and kaon are included. ²⁴

Detector acceptance effect on kine

$$x^{rec} = \frac{Q_{JB}^2}{Sy_{JB}}; \quad y^{rec} = \frac{(E - p_z)_h}{2E_e}; \ recQ^2 = \frac{p_{t,h}^2}{1 - y_{JB}}$$

25

Detector accepted: all final photon, pion, proton, neutron are included, -4<eta<4 True level, radiative

Resolution map after EIC smearing

26