Far-Forward Detectors and Acceptances in IP8

Cross-Collaboration Far-Forward. Meeting June 7ṭh, 2021
Alex Jentsch (Brookhạven National Laboratory)

Electron Ion Collider

Preliminaries

- Imported everything in EicRoot/GEANT.
- Placed a few detectors mirroring the placement in IP6 (RP, ZDC, Off-Momentum Det.).
- Roman Pots positioned on central beam axis.
- Also added a detector at the secondary focus (see later slides) - Roman Pots @ Secondary Focus (RPSF).
- All studies done using particle gun for now, with momentum ranges selected to coincide with relevant physics channels.
- Some preliminary plots with optics numbers from IP6.
- IP6 beta functions at the Roman Pots.
- IP6 $\boldsymbol{\beta}^{*}$ numbers for the Roman Pots @ Secondary Focus (RPSF).

IP8 Layout (FF hadron-going)

- Central trajectory proton at 275 GeV shown traversing the full lattice.
- 35 mrad crossing angle.
- Roman pots placed on central axis.
- Roman Pots @ Secondary Focus (RPSF) placed after QDS01.
- OMD just placed to grab off-momentum particles - no optimization for placement.
- ZDC is placed more or less in the best place, as close to a reasonable beam pipe diameter ($\sim 6 \mathrm{~cm}$) as was comparable to IP6.

Secondary Focus

- $\mathrm{p}=275 \mathrm{GeV}$ protons
- $0<$ theta $<2 \mathrm{mrad}$

- Secondary focus behaves nicely and allows for an additional spot for detectors (or a complete reconfiguration).

Proton Acceptance

Quick Digression - proton "xL" range vs. physics

- Different physics channels produce particles with different momentum w.r.t. the beam and with different scattering angles.

Process	Theta range (at top energy)	xL range	Detector (in IP6)
e+p DVCS	$0<\theta<5 \mathrm{mrad}$	$0.9-1.0$	Roman Pots
e+d diffractive (spectator proton)	$0<\theta<5 \mathrm{mrad}$ (mostly up to $2 \mathrm{mrad})$	$0.45-0.55$	Roman Pots; OMD
e+d diffractive (struck proton)	$0<\theta<10 \mathrm{mrad}$ (up to 15 for the tails)	$0.2-0.6$ (sometimes higher)	OMD; BO det.
e+He3 (spectator protons)	$0<\theta<10 \mathrm{mrad}$	$0.6-0.7$	Roman Pots
e+Au	$0<\theta<10 \mathrm{mrad}$	$0.35-0.55$	All three

- The above true for the IP6 configuration - of course with the secondary focus and different setup, a different detector configuration may be optimal for IP8.

Protons with $0.98<x _L<1.0$

proton_xL_MC

Generated

proton Polar Angle, $\theta[\mathrm{mrad}]$
proton_pt_MC

Accepted

proton Polar Angle, θ [mrad]
proton_theta_MC

Roman Pots

- $270<p<275 \mathrm{GeV}$ protons
- $0<$ theta $<5 \mathrm{mrad}$
proton_phi_MC

OMD

x coordinate [mm]

Protons with $0.8<x \quad L<0.98$

proton_xL_MC

Generated

proton Polar Angle, $\theta[\mathrm{mrad}]$
proton_pt_MC

Accepted

proton Polar Angle, θ [mrad]
proton_theta_MC

Roman Pots

$220<p<270 \mathrm{GeV}$ protons

- $0<$ theta < 5 mrad
proton_phi_MC

OMD

x coordinate [mm

Protons with $0.6<x L<0.8$

proton_xL_MC

Nucleon Momentum Fraction, x_{L}
Generated

proton Polar Angle, θ [mrad]
proton_pt_MC

Accepted

proton Polar Angle, θ [mrad]
proton_theta_MC

Roman Pots

$165<p<220 \mathrm{GeV}$ protons

- $0<$ theta < 5 mrad
proton_phi_MC

OMD

Protons with $0.45<x L<0.55$

- $138<p<151 \mathrm{GeV}$ protons
- $0<$ theta $<5 \mathrm{mrad}$
proton_xL_MC

Generated

proton Polar Angle, θ [mrad]
proton_pt_MC

proton Polar Angle, θ [mrad]
proton_theta_MC

Roman Pots

proton_phi_MC

x coordinate [mm]

Neutron Acceptance

Neutrons

- $p=135 \mathrm{GeV}$ protons
- 0 < theta < 10 mrad
neutron_pt_MC

Generated

Neutron Polar Angle, θ [mrad]
neutron_theta_MC

Accepted

neutron_phi_MC

ZDC

Secondary Focus + Optics

Roman Pots @ Secondary Focus (RPSF)

- Can be much smaller than the nominal Roman Pots (I am using a $10 \mathrm{~cm} \times 5 \mathrm{~cm}$ silicon plane now - similar to STAR RP size).
- Using IP6 optics numbers now just to illustrate the basics.
- Both the IP (beta*) and beta functions at RP in IP6.
- Note: The high divergence vs. high acceptance optics configurations will be "backwards" for the RPSF compared to the nominal RP.
- In the nominal RP case, high divergence means small beta*, and therefore larger beta functions (and larger 10sigma) @ RP.
- For RPSF, the beta* at the IP is directly proportional to the beta(z=RPSF), which is exactly the point of the secondary focus.

Species high acceptance	proton	electron
Energy [GeV]	275	18
CM energy [GeV]	140.7	
Bunch intensity $\left[10^{10}\right]$		
No. of bunches	290	
Beam current $[\mathrm{A}]$	0.69	0.227
RMS norm. emit., h/v $[\mu \mathrm{m}]$	$5.2 / 0.46$	$845 / 70$
RMS emittance, $\mathrm{h} / \mathrm{v}[\mathrm{nm}]$	$17.6 / 1.6$	$24.0 / 2.0$
$B^{*}, \mathrm{~h} / \mathrm{v}$ [cm]	$417 / 38$	$306 / 30$
IP RMS beam size, h/v $[\mu \mathrm{m}]$	$271 / 24$	
K_{x}	11.1	
RMS $\Delta \theta, \mathrm{h} / \mathrm{v}[\mu \mathrm{rad}]$	$65 / 65$	$89 / 82$
BB parameter, h/v $\left[10^{-3}\right]$	$3 / 3$	$92 / 100$
RMS long. emittance $\left[10^{-3}, \mathrm{eV} \cdot \mathrm{s}\right]$	36	
RMS bunch length $[\mathrm{cm}]$	6	0.9
RMS $\Delta p / p\left[10^{-4}\right]$	6.8	10.9
Max. space charge	0.007	neglig.
Piwinski angle $[\mathrm{rad}]$	2.8	0.9
Long. IBS time $[\mathrm{h}]$	2.0	
Transv. IBS time $[\mathrm{h}]$	2.0	
Hourglass factor H	0.99	
Luminosity $\left[10^{33} \mathrm{~cm}{ }^{-2} \mathrm{~s}^{-1}\right]$	0.32	


```Species high divergence Energy [GeV] CM energy [GeV]```	$\begin{array}{cc} \text { proton } & \text { electron } \\ 275 \quad 18 \\ 140.7 \end{array}$
Bunch intensity [ $10^{10}$ ]   No. of bunches   Beam current [A]	$$
RMS norm. emit., h/v [ $\mu \mathrm{m}$ ] RMS emittance, $\mathrm{h} / \mathrm{v}$ [ nm ] $\left.\beta^{*}, \mathrm{~h} / \mathrm{v}[\mathrm{~cm}]\right]$	$\begin{array}{\|cc\|} \hline 5.2 / 0.47 & 845 / 71 \\ 18 / 1.6 & 24 / 2.0 \\ 80 / 7.1 & 59 / 5.7 \\ \hline \end{array}$
IP RMS beam size, $\mathrm{h} / \mathrm{v}[\mu \mathrm{m}]$ $K_{x}$   RMS $\Delta \theta, \mathrm{h} / \mathrm{v}[\mu \mathrm{rad}]$   BB parameter, $\mathrm{h} / \mathrm{v}\left[10^{-3}\right.$ ]   RMS long. emittance $\left[10^{-3}, \mathrm{eV} \cdot \mathrm{s}\right]$   RMS bunch length [ cm ]   RMS $\Delta p / p\left[10^{-4}\right]$   Max. space charge   Piwinski angle [rad]   Long. IBS time [h]   Transv. IBS time [h]   Hourglass factor $H$   Luminosity $\left[10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right.$ ]	

## RPSF vs. Roman Pots (IP6 optics - High Acceptance)

proton_xL_MC


Nucleon Momentum Fraction, x
proton_xL_MC

proton pt_MC

proton_pt_MC

proton theta_MC

proton theta MC

proton_phi_MC

proton_phi_MC


Azimuthal Angle, $\phi[\mathrm{rad}]$

## RPSF vs. Roman Pots (IP6 optics - High Acceptance)

Generated


Generated

proton Polar Angle, $\theta[\mathrm{mrad}]$

Accepted


Accepted


RP hits


RP hits


RPSF hits


RPSF hits


RPSF vs. Roman Pots (IP6 optics - High Divergence)

proton_xL_MC

proton_pt_MC

proton_pt_MC

proton_theta_MC

proton_theta_MC

proton_phi_MC

proton_phi_MC


Azimuthal Angle, $\phi[\mathrm{rad}]$

## RPSF vs. Roman Pots (IP6 optics - High Divergence)

Generated

proton Polar Angle, $\theta$ [mrad]
Generated

proton Polar Angle, $\theta[\mathrm{mrad}]$

Accepted

proton Polar Angle, $\theta$ [mrad]
Accepted


RP hits


RP hits


RPSF hits


RPSF hits

x coordinate [mm]

## Summary

- First IP8 layout provides good acceptance to both protons and neutrons.
- Almost the same coverage for RP protons as IP6 (theta $\sim 4$ mrad full coverage).
- About the same azimuthally symmetric coverage for neutrons ( $\sim 4$ mrad), but more acceptance for neutrons at phi $=0$.
- Secondary focus is observable in GEANT.
- Have some preliminary sanity checks on the behavior and benefits w.r.t. acceptance.
- Will need optics information (beta functions, emittance, etc.) to do a more careful look.
- Off-momentum protons have a different overall behavior than in IP6 - will impact detector placement/usage.
- In general, may want to re-think the basic layout of detectors w.r.t. Roman Pots vs. Roman Pots @ secondary focus, and the OMD.
- Space for BO detector equivalent needs to be understood.

> IP6 and IP8 have many acceptance overlaps, and places where they enhance each other. The two IPs together will provide an incredibly strong, complementary physics program for the EIC!

## Comparison of magnets in IP6/IP8



## Central Proton Orbit Coordinates

Proton orbit @ exit of magnet [meters] BXSPO1 (x_global, y_global, z_global) $=(0.2308459,0.0000000,6.6960089)$
Proton orbit @ exit of magnet [meters] QFFDSO1A (x_global, y_global, z_global) $=(0.3059584,-0.0000026,9.1946698)$
Proton orbit @ exit of magnet [meters] QFFDSO1B (x_global, y_global, z_global) $=(0.3913427,-0.0000122,11.8933887)$
Proton orbit @ exit of magnet [meters] QFFDSO2A (x_global, y_global, z_global) $=(0.5092839,-0.0000293,15.4915869)$
Proton orbit @ exit of magnet [meters] QFFDSO2B (x_global, y_global, z_global) $=(0.6073845,-0.0000542,18.3900232)$
Proton orbit @ exit of magnet [meters] BXDSO1A (x_global, y_global, z_global) $=(0.7329013,-0.0001179,23.6893164)$

