Occupancy in low-Q² tagger

W. Schmidke ATHENA FB Det. Mtg. 09.06.21

- Preliminary version low-Q² tagger:
 - since then updated 2 taggers
 - #s here* based on old version, similar to newer Tagger1

*Original: YR Far Fwd. Det. Mta. 27.04.20

Possibilities:

tagging/measuring electrons from very low-Q² DIS (photoproduction)

 These processes will compete with the high cross section bremsstrahlung process (used for LUMI measurement)

40

20

Place for low-Q2 tagger

Q2eR Q1eR

Q1BpR

B2eR

02pR

-10

Here:

- Check brems. per bunch occupancy of tagger (it's high)
- Mitigation for possible physics use \Rightarrow tagger design
- Reminder:

tagger for LUMI measurement cross check / calibration

Length z (m)

Bethe-Heitler

High cross section Bethe-Heitler bremsstrahlung ep→epγ
 Photons used for LUMI measurement (pair spectrometer)

- $8.5 < E_{e}' < 12.75 \text{ GeV} \implies 5.25 < E_{v} < 9.5 \text{ GeV}$ (red arrows)
- Integrate B-H formula over this range: tagger cross section σ (tagger) = 23.1 mb
- Rather large cross section; how often tagger hit? \u00e5

Luminosity, hits / bunch xing

- Handy conversion for cross sections: $1 \text{ mb} = 10^{-27} \text{ cm}^2$
- EIC 275×18 high divergence configuration:
 - $-L = 1.65 \times 10^{33} \text{ cm}^{-2} \text{ sec}^{-1} = 1.65 \times 10^{6} \text{ mb}^{-1} \text{ sec}^{-1}$
 - 290 bunches, bunch spacing $T_{_h} \approx 13 \ \mu sec/290 = 44.8 \times 10^{-9} sec$
- L = 0.074 mb⁻¹ / bunch ×ing
- Tagger hits / bunch ×ing = $L \cdot \sigma$ (tagger) = 1.71
- This is mean (λ) of a Poisson distribution:
- Only 18% (e^{-λ}) of bunch ×ings have no tagger hit from B-H brems.
- 82% (1-e^{- λ}) have one or more tagger hits, ~50% multiple hits
- These will overlap with any other photoproduction / low-Q² DIS we want to measure with the tagger

Other EIC energies

• Tagger E_e' range defined by dipole in e-ring $\Rightarrow E_e'$, E_γ ranges scale with beam $E_e^{:}$:

$E_e \ (\text{GeV})$	18	10	5
min. E_{γ} (GeV)	5.25	2.9	1.5
max. E_{γ} (GeV)	9.5	5.3	2.6

• B-H spectra all EIC energies:

Similar integral over tagger range all energies: 17-23 mb

Other EIC energies

• From EIC tables for high divergence (acceptance) configurations:

$E_p \times E_e \; (\text{GeV} \times \text{GeV})$	275×18	275×10	100×10	100×5	41×5
L $(10^{33} \text{ cm}^{-2} \text{ sec}^{-1})$					
$= (10^6 \text{ mb}^{-1} \text{ sec}^{-1})$	1.65(0.83)	10.05(6.4)	4.35(4.07)	3.16	0.44
# bunches	290	1160	1160	1160	1160
$T_b(10^{-9} \text{ sec})$	44.8	11.2	11.2	11.2	11.2
$L (mb^{-1}/bunch)$	0.074(0.037)	0.112(0.072)	0.049(0.046)	0.035	0.005
$\sigma(\text{tagger}) \text{ (mb)}$	23.1	22.8	21.4	18.6	17.5
tagger hits / bunch	1.71 (0.85)	2.55(1.62)	1.05(0.98)	0.65	0.088

- The bottom line (except for lowest \sqrt{s} configuration): always have mean λ = 0.65-2.5 B-H brems. hits in tagger / bunch ×ing
- 50-90% of bunch ×ings have one or more B-H brems. hits in tagger:
- Complications for physics analyses

5

Mitigation

<u>HERA:</u> tagged photoproduction, vetoed γ in zero-degree calorim.

- possible @ lower HERA luminosities, few γ 's per bunch ×ing
- not possible @ EIC: many B-H brems. γ's per bunch ×ing veto ~everything
- possible @ EIC with special running: low per-bunch luminosity unpopular

<u>Segmented tagger \leftrightarrow central detector:</u>

Segment tagger: distinguish a few e' hits, measure energies E_e'

- Central detector:
 - consider (E-P_z) = $\sum_{i} E_{i} P_{zi}$ sum i over all track/calorim. objects

Events

5000

7500 ZEUS@HERA

2E_ = 55 Ge\

45

50

- objects 'leaking' down forward (hadron) beam pipe E-P ₂ ≈ 0
- initial state (beams): (E-P) = 2E
- fully contained DIS: $(E-P_{z}) \approx 2E_{e}$
- e' down rear beam pipe: $\vec{E}_{e}' = \vec{E}_{e} (\vec{E} \vec{P}_{e})/2$
- compare/match E_{e} ' from tagger, central detector

Challenging when 3,4,5... hits in tagger

55

E-P, (GeV)

Mitigation: tagger X,Y,E <u>Brems. electrons:</u> $p_{T} \sim 0$ • Dipole \rightarrow tagger: no vertical Y deflection like spectrometer in horizontal X: $E(X) \propto 1/X$

• Distributions Y(X), E(X) in tagger:

- With smearing for beam divergence:
 - <u>Low-Q². electrons:</u> $p_{T}>0$

• electrons $p_x \neq 0$: lie outside brems. E(X) band

 $p_{y}\neq 0$: lie outside brems. Y(X) band

- Reject hits inside brems. bands: minimum Q²
- Outer limits tagger acceptance (edges): maximum Q²
- Should check w/ Jarda's generators, simulation
- We have some (old) data \u2264

Х

Х

agger

ΔX∝1/E '

ZEUS detectors

<u>ZEUS</u>

- central detectors (calorimeter CAL)
- positron tagger @ 6m
- LUMI pair spectrometer @ 105m

<u>Select</u>

- bremsstrahlung: coincidence tagger hit & γ in pair spectrometer
- Iow-Q²: coincidence tagger hit & energy in ZEUS CAL e⁺ direction 8

Tagger simulation

- Tagger simulation will provide guidance:
 - priority as proposal timeline dictates,
 - results will guide tagger design
 - significant overlap w/ Inclusive/Tagging Physics WG; a little help?
- Jarda has the tools ready*:
 - GETaLM generator: brems. & low-Q², beam divergence smearing
 - Geant4 simulation: beamline magnets, taggers
- Wish list of plots, do for brems. & low-Q²:
 - do/dE ' for electrons hitting taggers;
 plots show magnitude of problem
 integrals give accurate tagger cross sections, hits / bunch ×ing
 - tagger E vs. X, Y vs X: separation of brems. & low-Q²
 Q² range of measurement

* links in:

https://indico.bnl.gov/event/11852/contributions/49812/attachments/34806/56548/JA-Tools_YR_20210526.pdf

LUMI spectrometer acceptance

Important reminder:

- The tagger also has an equally important purpose: measurement / ×check lumi spectrometer acceptance
- From $ep \rightarrow ep\gamma$: e in tagger \Rightarrow look for γ in spectrometer
 - check / verify simulation of spectrometer; estimate systematics
 - e.g. measure exit window conversion probability
- Need special (short) low lumi / bunch ×ing runs
 - ensure only one γ in system per bunch $\times ing$
 - high cross section physics measurements could use these runs

Sad historical note:

- We never completed this analysis on ZEUS (due to circumstances...)
- Final systematic on LUMI: 1.7%
- Could have achieved ~1% with tagger measurement
- Must do this for EIC!