

SUPERCONDUCTING NANOWIRE DETECTORS

TOMAS POLAKOVIC Argonne National Laboratory

SUPERCONDUCTING NANOWIRE DETECTORS

- Superconducting thin film-based sensors
 - -~10 nm thick film
 - Wide range of possible substrates (even 10 um membranes)
- Individual pixel size on the order of 10-100 um
- Simple readout
 - -2-wire voltage drop measurement
 - Minimal preamplification necessary

OPERATION

- Uses quasi-particle avalanche process inside a current biased superconducting nanowire to detect scattering/absorption of individual quantum excitations
 Much faster and more sensitive than
- Much faster and more sensitive than ionization avalanches in semiconductor detectors

OPERATION

- Uses quasi-particle avalanche process inside a current biased superconducting nanowire to detect scattering/absorption of individual quantum excitations
- Much faster and more sensitive than ionization avalanches in semiconductor detectors

METRICS

- The fastest and most precise "firstgen" quantum detector of individual particles
 - Energy thresholds as low as ~100 meV
 - Timing jitter easily 20-40 ps (current record at 2.7 ps)
 - Reset times can be as low as 5-10 ns
 - Conveniently operates at roughly LHe temperatures
 - Can operate in magnetic fields of > 5 T

Snowmass2021 SNSPD LOI (2020)

Ihim [µA]

(b)

0.75 Counts

nalized

0.25

1.00

PARTICLE DETECTION

- Have been demonstrated to also detect low/medium-energy (~5 MeV)
 α, β particles and neutrons (indirectly)
 - All important metrics (timing, efficiency, etc.) seem to be the same
 - Detection of high energy particles still an open question

PARTICLE DETECTION

- Have been demonstrated to also detect low/medium-energy (~5 MeV)
 α, β particles and neutrons (indirectly)
 - All important metrics (timing, efficiency, etc.) seem to be the same
 - Detection of high energy particles still an open question
 - Potential also for calorimetry

LARGER AREA DETECTORS

 Looking into fabrication of larger multi-pixel arrays

