

SIDIS - Working Group

June 16, 2021

Marco Radici (INFN - Pavia) for the Pavia group

Standard TMD formula

$$f_1^q(x, b_T; \mu) = \sum_i (C_{qi} \otimes f_1^i)(x, b_*; \mu_b) e^{S(b_*; \mu_b, \mu)} e^{g_K(b_T) \log \mu/\mu_0} f_{NP}^q(x, b_T)$$

Standard TMD formula

$$\begin{array}{l} b_{\max} = 2e^{-\gamma_E} \\ b_{\min} = \frac{2e^{-\gamma_E}}{Q} \end{array} \end{array} \right\} \quad 1 \le \mu_b \le Q \\ \text{For } \mu = \mu_0 = 1 \text{ GeV TMD}(x, b_T; \mu_0) = \text{PDF}(x; \mu_0) f_{\text{NP}}(x, b_T) \end{array}$$

other prescriptions possible..

Standard TMD formula

 $\overline{b_T}$ (GeV-1)

1.5

0.0

0.5

1.0

other prescriptions possible..

NonPerturbative functional form

PV17 fit

A. Bacchetta et al., JHEP06 (2017) 081, arXiv:1703.10157

intrinsic wave function

$$f_{\rm NP}(x, \boldsymbol{k}_T^2) = \frac{1}{\pi} \frac{1 + \lambda \boldsymbol{k}_T^2}{g_1 + \lambda g_1^2} e^{-\boldsymbol{k}_T^2/g_1} \qquad g_1(x) = N_1 \frac{(1 - x)^2 x}{(1 - \hat{x})^\alpha \hat{x}^\sigma}$$
$$\hat{x} = 0.1$$

evolution

$$g_K(b_T) = -g_2 \frac{b_T^2}{4}$$

similar for TMD FF

(1

 $r)\alpha r\sigma$

NonPerturbative functional form

PV17 fit

A. Bacchetta et al., JHEP06 (2017) 081, arXiv:1703.10157

intrinsic wave function

$$f_{\rm NP}(x, \boldsymbol{k}_T^2) = \frac{1}{\pi} \frac{1 + \lambda r_T^2}{g_1 + \lambda g_1^2} e^{-\boldsymbol{k}_T^2/g_1} \qquad g_1(x) = N_1 \frac{(1 - x)^{\alpha} \hat{x}^{\sigma}}{(1 - \hat{x})^{\alpha} \hat{x}^{\sigma}}$$
$$\hat{x} = 0.1$$

 $g_K(b_T) = -g_2 \frac{b_T^2}{\Lambda}$

similar for TMD FF

 $\hat{x} = 0.1$

 $g_2 \rightarrow$ nonperturbative evolution

 $N_1 = g_1(\hat{x}) \rightarrow \text{mid-}x \text{ width of TMD}$

 $\sigma \rightarrow \text{low-}x \text{ width of TMD}$

 $a \rightarrow high-x$ width of TMD

 $\lambda \rightarrow$ weight of second Gaussian

not much constrained by fit

NonPerturbative functional form

PV17 fit

A. Bacchetta et al., JHEP06 (2017) 081, arXiv:1703.10157

intrinsic wave function

$$f_{\rm NP}(x, \boldsymbol{k}_T^2) = \frac{1}{\pi} \frac{1 + \lambda \boldsymbol{k}_T^2}{g_1 + \lambda g_1^2} e^{-\boldsymbol{k}_T^2/g_1} \qquad g_1(x) = N_1 \frac{(1-x)^{\alpha} \hat{x}^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$
$$\hat{x} = 0.1$$

evolution

$$g_K(b_T) = -g_2 \frac{b_T^2}{4}$$

similar for TMD FF

- $\begin{cases} g_2 \rightarrow \text{nonperturbative evolution} \\ N_1 = g_1(\hat{x}) \rightarrow \text{mid-}x \text{ width of TMD} \\ \sigma \rightarrow \text{low-}x \text{ width of TMD} \end{cases}$

 - $\alpha \rightarrow \text{high-}x \text{ width of TMD}$ $\lambda \rightarrow \text{ weight of second Gaussian }$

not much constrained by fit

PV17 nonperturbative parameters

PV17 fit

A. Bacchetta et al., JHEP06 (2017) 081, arXiv:1703.10157

Data from:	SIDIS	Drell-Yan	Z-boson production	
	Hermes, Compass	FermiLab	Tevatron: CDF , D0	

8059 pts , 11 parameters , χ^2/dof = 1.55 ± 0.05

all standard deviations at 68% confidence level

Sensitivity coefficients of PV17 parameters

Yellow Report R. Abdul Khalek et al., arXiv:2103.05419

Figure 8.30: Expected sensitivities to various TMD PDF and FF parameters, as well as the TMD evolution as shown for the verious collision energy options and for detected final-state positive pions. The impact has been averaged over final state hadron transverse momentum and fractional energy for better visibility.

$$S(\langle x \rangle_{\text{bin}}, \langle Q^2 \rangle_{\text{bin}})$$
 with weighted average over z, P_T, \sqrt{s} (weights proportional to 1/error of pseudodata)

sensitivity coefficient S of object *f* w.r.t. observable *O*

sensitivity coefficient S of object f w.r.t. observable O

- 1. from PV17, we know a parameter A with error ΔA
- 2. if we perform a new measurement that produces on *A* an error equal to its initial standard deviation, $\delta A = \Delta A$, we expect the error on *A* to scale as $1/\sqrt{2}$. We postulate that this corresponds to S(A) = 1

sensitivity coefficient S of object f w.r.t. observable O

- 1. from PV17, we know a parameter A with error ΔA
- 2. if we perform a new measurement that produces on *A* an error equal to its initial standard deviation, $\delta A = \Delta A$, we expect the error on *A* to scale as $1/\sqrt{2}$. We postulate that this corresponds to S(A) = 1
- 3. in fact, if A can be ideally considered as parameter and observable, then

$$S(A,A) = \frac{\langle A A \rangle - \langle A \rangle \langle A \rangle}{\delta A \Delta A} = \frac{(\Delta A)^2}{\Delta A \Delta A} = 1$$

4. the error on A scales as $1/\sqrt{2} = 1/\sqrt{1 + (S = 1)}$. If the new measurement is more precise, then S >1 and the error is further reduced; viceversa, for S< 1

sensitivity coefficient S of object f w.r.t. observable O

- 1. from PV17, we know a parameter A with error ΔA
- 2. if we perform a new measurement that produces on *A* an error equal to its initial standard deviation, $\delta A = \Delta A$, we expect the error on *A* to scale as $1/\sqrt{2}$. We postulate that this corresponds to S(A) = 1
- 3. in fact, if A can be ideally considered as parameter and observable, then

$$S(A, A) = \frac{\langle A A \rangle - \langle A \rangle \langle A \rangle}{\delta A \Delta A} = \frac{(\Delta A)^2}{\Delta A \Delta A} = 1$$

- 4. the error on A scales as $1/\sqrt{2} = 1/\sqrt{1 + (S = 1)}$. If the new measurement is more precise, then S >1 and the error is further reduced; viceversa, for S< 1
- 5. for *n* measurements, the error on *A* should scale as $1/\sqrt{1 + S_1 + \ldots + S_n}$

$S(\langle x \rangle_{\rm bin}, \langle Q^2 \rangle_{\rm bin})$ with weighted average over z, P_T

$S(\langle x \rangle_{\rm bin}, \langle Q^2 \rangle_{\rm bin})$ with weighted average over z, P_T

 $\mathbf{N}_1^{\mathrm{dv}}$

 σ

 \mathbf{g}_2

 \mathbf{N}_3^{IV}

NonPerturbative evolution g₂

summing over all (x, Q^2) bins

PV17 fit:	$\Delta g_2 = 0.01 \longrightarrow$	run at $\sqrt{s} = 28$ GeV, $\pi^+ \longrightarrow 0.00155$	$R(g_2) = 6.45$
		run at $\sqrt{s} = 44$ GeV, $\pi^+ \longrightarrow 0.00120$	$R(g_2) = 8.33$
		run at $\sqrt{s} = 63$ GeV, $\pi^+ \longrightarrow 0.00108$	$R(g_2) = 9.26$
		run at $\sqrt{s} = 84$ GeV, $\pi^+ \longrightarrow 0.00105$	$R(g_2) = 9.52$
		run at $\sqrt{s} = 140$ GeV, $\pi^+ \longrightarrow 0.00096$	$R(g_2) = 10.36$

consistent trend: larger $\sqrt{s} \longrightarrow$ larger covered (x,Q²) \longrightarrow more stringent constraint

NonPerturbative evolution g2

summing over all (x, Q^2) bins

PV17 fit:	$\Delta g_2 = 0.01 \longrightarrow$	run at $\sqrt{s} = 28$ GeV, $\pi^+ \longrightarrow$	0.00155	$R(g_2) = 6.45$
		run at $\sqrt{s} = 44$ GeV, $\pi^+ \longrightarrow$	0.00120	$R(g_2) = 8.33$
		run at $\sqrt{s} = 63$ GeV, $\pi^+ \longrightarrow$	0.00108	$R(g_2) = 9.26$
		run at $\sqrt{s} = 84$ GeV, $\pi^+ \longrightarrow$	0.00105	$R(g_2) = 9.52$
		run at $\sqrt{s} = 140$ GeV, π^+ —	→ 0.00096	$R(g_2) = 10.36$
			c larger \sqrt{s} -	consistent trend: \longrightarrow larger covered (x,Q ²)

 \rightarrow more stringent constraint

Caveat

- optimistic upper limit in reduction coeff. *R* (no correlation between measurements in different bins)
- exercise biased by rigidity of PV17 functional form; future fits with (many) thousands points could demand more flexible forms

Max error reduction *R* for PV17 parameters

Energies Parameters	$\sqrt{s} = 28$	$\sqrt{s} = 44$	$\sqrt{s} = 63$	$\sqrt{s} = 84$	$\sqrt{s} = 140$
<i>g</i> ₂ nonperturbative evolution	6.45	8.33	9.26	9.52	10.36
<i>N</i> 1 mid- <i>x</i> TMD width	5.94	6.52	6.96	6.80	6.73
σ low- <i>x</i> TMD width	5.05	6.85	8.00	8.55	10.00

PV17 fit: $\Delta g_2 = 0.01 \longrightarrow$ summing over all (x, Q^2) bins $\longrightarrow 0.00155$ $R(g_2) = 6.45$

PV17 fit: $\Delta g_2 = 0.01 \longrightarrow$ summing over all (x, Q^2) bins $\longrightarrow 0.00155$ $R(g_2) = 6.45$

summing over all $Q^2 \le 10$ bins $\longrightarrow 0.00218$ 71% R

PV17 fit: $\Delta g_2 = 0.01 \longrightarrow$ summing over all (x, Q^2) bins $\rightarrow 0.00155$ $R(g_2) = 6.45$ summing over all $Q^2 \le 10$ bins $\rightarrow 0.00218$ 71% Rsumming over all $10 \le Q^2 \le 100$ bins $\rightarrow 0.00216$ 72% R

$$\sqrt{s}=28$$
 GeV, π^+

PV17 fit: $\Delta g_2 = 0.01 \longrightarrow$ summing over all (x, Q^2) bins $\longrightarrow 0.00155$ $R(g_2) = 6.45$ summing over all $Q^2 \le 10$ bins $\longrightarrow 0.00218$ 71% Rsumming over all $10 \le Q^2 \le 100$ bins $\longrightarrow 0.00216$ 72% Rsumming over all $x \le 0.01$ bins $\longrightarrow 0.00306$ 51% R

$$\sqrt{s}=28$$
 GeV, π^+

PV17 fit: $\Delta g_2 = 0.01 \longrightarrow$ summing over all (x, Q^2) bins $\longrightarrow 0.00155$ $R(g_2) = 6.45$ summing over all $Q^2 \le 10$ bins $\longrightarrow 0.00218$ 71% Rsumming over all $10 \le Q^2 \le 100$ bins $\longrightarrow 0.00216$ 72% Rsumming over all $x \le 0.01$ bins $\longrightarrow 0.00306$ 51% Rsumming over all $x \ge 0.01$ bins $\longrightarrow 0.00177$ 88% R

$$\sqrt{s}=28$$
 GeV, π^+

bins Energies	All bins	$Q^2 \le 10$	$10 \le Q^2 \le 100$	<i>x</i> ≤ 0.01	$0.01 < x \le 1$
$\sqrt{s} = 28$	R = 6.45	71% R	72% R	51% R	88% R
$\sqrt{s} = 44$	R = 8.33	71% R	69% R	48% R	89% R
$\sqrt{s} = 63$	R = 9.26	72% R	67% R	59% R	82% R
$\sqrt{s} = 84$	R = 9.52	73% R	66% R	64% R	77% R
$\sqrt{s} = 140$	R = 10.36	75% R	63% R	80% R	61% R

good options at $\sqrt{s} = 140, x \le 0.01$ but also at $\sqrt{s} = 44, 0.01 < x \le 1$

bins Energies	All bins	$Q^2 \le 10$	$10 \le Q^2 \le 100$	<i>x</i> ≤ 0.01	$0.01 < x \le 1$
$\sqrt{s} = 28$	<i>R</i> = 6.45	71% R	72% R	51% R	88% R
$\sqrt{s} = 44$	R = 8.33	71% R	69% R	48% R	89% R
$\sqrt{s} = 63$	R = 9.26	72% R	67% R	59% R	82% R
$\sqrt{s} = 84$	R = 9.52	73% R	66% R	64% R	77% R
$\sqrt{s} = 140$	R = 10.36	75% R	63% R	80% R	61% R

good options at medium-large x and/or at low Q^2

bins Energies	All bins	$Q^2 \le 10$	$10 \le Q^2 \le 100$	<i>x</i> ≤ 0.01	$0.01 < x \le 1$
$\sqrt{s} = 28$	<i>R</i> = 5.94	83% R	58% R	43% R	92% R
$\sqrt{s} = 44$	R = 6.52	77% R	62% R	41% R	92% R
$\sqrt{s} = 63$	R = 6.96	81% R	56% R	50% R	88% R
$\sqrt{s} = 84$	<i>R</i> = 6.80	83% R	52% R	61% R	81% R
$\sqrt{s} = 140$	R = 6.73	83% R	53% R	79% R	63% R

consistent trend: good option at $\sqrt{s} = 140, x \le 0.01$ but doesn't need large **Q**²

bins Energies	All bins	$Q^2 \le 10$	$10 \le Q^2 \le 100$	<i>x</i> ≤ 0.01	$0.01 < x \le 1$
$\sqrt{s} = 28$	R = 5.05	83% R	58% R	49% R	90% R
$\sqrt{s} = 44$	R = 6.85	82% R	57% R	62% R	79% R
$\sqrt{s} = 63$	R = 8.00	83% R	55% R	72% R	71% R
$\sqrt{s} = 84$	R = 8.55	83% R	55% R	76% R	66% R
$\sqrt{s} = 140$	R = 10.00	83% R	54% R	86% R	52% R