

SIDIS - Working Group

June 16, 2021

Marco Radici (INFN - Pavia) for the Pavia group

Standard TMD formula

$$
f_1^q(x, b_T; \mu) = \sum_i (C_{qi} \otimes f_1^i)(x, b_*; \mu_b) e^{S(b_*; \mu_b, \mu)} e^{g_K(b_T) \log \mu / \mu_0} f_{\rm NP}^q(x, b_T)
$$

Standard TMD formula

$$
b_{\max} = 2e^{-\gamma_E}
$$

\n
$$
b_{\min} = \frac{2e^{-\gamma_E}}{Q}
$$

\n
$$
1 \le \mu_b \le Q
$$

\nFor $\mu = \mu_0 = 1$ GeV $\text{TMD}(x, b_T; \mu_0) = \text{PDF}(x; \mu_0) f_{\text{NP}}(x, b_T)$

other prescriptions possible..

Standard TMD formula

 b_T (GeV-1)

0.0 0.5 1.0 1.5 2.0

other prescriptions possible..

NonPerturbative functional form

PV17 fit

A. Bacchetta *et al.*, JHEP06 (2017) 081, arXiv:1703.10157

intrinsic wave function

$$
f_{\rm NP}(x, \mathbf{k}_T^2) = \frac{1}{\pi} \frac{1 + \lambda \mathbf{k}_T^2}{g_1 + \lambda g_1^2} e^{-\mathbf{k}_T^2/g_1} \qquad \begin{array}{c} g_1(x) = N_1 \frac{(1 - x)^\alpha x^\sigma}{(1 - \hat{x})^\alpha \hat{x}^\sigma} \\ \hat{x} = 0.1 \end{array}
$$

evolution

$$
g_K(b_T)=-g_2\frac{b_T^2}{4}
$$

similar for TMD FF

NonPerturbative functional form

PV17 fit

A. Bacchetta *et al.*, JHEP06 (2017) 081, arXiv:1703.10157

intrinsic wave function

$$
f_{\rm NP}(x, k_T^2) = \frac{1}{\pi} \frac{1 + \lambda k_T^2}{g_1 + \lambda g_1^2} e^{-k_T^2/g_1} \qquad g_1(x) = N_1
$$

$$
=\frac{N}{\sqrt{(1-\hat{x})^{\alpha}\hat{x}^{\sigma}}}
$$

$$
\hat{x} = 0.1
$$

evolution

$$
g_K(b_T) = -\frac{b_T^2}{4}
$$

similar for TMD FF

- $g_2 \rightarrow$ nonperturbative evolution
- $N_1 = g_1(\hat{x}) \rightarrow \text{mid-}x \text{ width of TMD}$
- σ → low-*x* width of TMD

α → high-*x* width of TMD

 $\alpha \rightarrow$ high-x width of TMD
 $\lambda \rightarrow$ weight of second Gaussian λ not much constrained by fit

NonPerturbative functional form

PV17 fit

A. Bacchetta *et al.*, JHEP06 (2017) 081, arXiv:1703.10157

intrinsic wave function

$$
f_{\rm NP}(x, k_T^2) = \frac{1}{\pi} \frac{1 + \lambda k_T^2}{g_1 + \lambda g_1^2} e^{-k_T^2/g_1} \qquad g_1(x) = N_1 \frac{(1 - x)^{\alpha} \lambda^{\sigma}}{(1 - \hat{x})^{\alpha} \hat{x}^{\sigma}}
$$

$$
\hat{x} = 0.1
$$

evolution

$$
g_K(b_T) = -\frac{b_T^2}{4}
$$

similar for TMD FF

- g_2 $\;\rightarrow$ nonperturbative evolution $N_1 = g_1(\hat{\mathbf{x}}) \ \rightarrow \ \textsf{mid-} \mathbf{x}$ width of TMD
- σ → low-*x* width of TMD

α → high-*x* width of TMD

 $\lambda \rightarrow$ weight of second Gaussian λ not much constrained by fit

PV17 nonperturbative parameters

PV17 fit

A. Bacchetta *et al.*, JHEP06 (2017) 081, arXiv:1703.10157

8059 pts, 11 parameters, χ^2 /dof = 1.55 \pm 0.05

all standard deviations at 68% con fidence level

Sensitivity coefficients of PV17 parameters vity coemcients of PVT7 parameters

Yellow Report R. Abdul Khalek *et al.*, arXiv:2103.05419

Figure 8.30: Expected sensitivities to various TMD PDF and FF parameters, as well as the TMD evolution as shown for the verious collision energy options and for detected final-state positive pions. The impact has been averaged over final state hadron transverse momentum and fractional energy for better visibility.

$$
S(\langle x \rangle_{\text{bin}}, \langle Q^2 \rangle_{\text{bin}}
$$
) with weighted average over z, P_T, \sqrt{s} (weights proportional to 1/error of pseudodata)

sensitivity coefficient *S* of object *f* w.r.t. observable *O*

sensitivity coefficient *S* of object *f* w.r.t. observable *O*

- 1. from PV17, we know a parameter *A* with error Δ*A*
- 2. if we perform a new measurement that produces on *A* an error equal to its initial standard deviation, δ $A = \Delta A$, we expect the error on A to scale as $1/\surd 2$. We postulate that this corresponds to $S(A) = 1$

sensitivity coefficient *S* of object *f* w.r.t. observable *O*

- 1. from PV17, we know a parameter *A* with error Δ*A*
- 2. if we perform a new measurement that produces on *A* an error equal to its initial standard deviation, δ $A = \Delta A$, we expect the error on A to scale as $1/\surd 2$. We postulate that this corresponds to $S(A) = 1$
- 3. in fact, if *A* can be ideally considered as parameter and observable, then

$$
S(A, A) = \frac{\langle A \, A \rangle - \langle A \rangle \langle A \rangle}{\delta A \, \Delta A} = \frac{(\Delta A)^2}{\Delta A \, \Delta A} = 1
$$

4. the error on A scales as $1/\sqrt{2} = 1/\sqrt{1 + (S-1)}$. If the new measurement is more precise, then *S* >1 and the error is further reduced; viceversa, for *S*< 1

sensitivity coefficient *S* of object *f* w.r.t. observable *O*

- 1. from PV17, we know a parameter *A* with error Δ*A*
- 2. if we perform a new measurement that produces on *A* an error equal to its initial standard deviation, δ $A = \Delta A$, we expect the error on A to scale as $1/\surd 2$. We postulate that this corresponds to $S(A) = 1$
- 3. in fact, if A can be ideally considered as parameter and observable, then

$$
S(A, A) = \frac{\langle A \, A \rangle - \langle A \rangle \langle A \rangle}{\delta A \, \Delta A} = \frac{(\Delta A)^2}{\Delta A \, \Delta A} = 1
$$

- 4. the error on A scales as $1/\sqrt{2} = 1/\sqrt{1 + (S-1)}$. If the new measurement is more precise, then *S* >1 and the error is further reduced; viceversa, for *S*< 1
- 5. for *n* measurements, the error on *A* should scale as $1/\sqrt{1 + S_1 + ... + S_n}$

$S(\langle x\rangle_{\text{bin}}, \langle Q^2\rangle_{\text{bin}})$ with weighted average over $\,$ z, $P_{\,T}$

 N_1^{dv} (mid x TMD PDF width) (low x TMD PDF width) $\blacksquare \sigma$ (nonperturbative evolution) \Box g₂ \blacksquare N_3^{rv} (mid z TMD FF width) $\blacksquare \lambda_F$ (TMD FF nongaussianity)

$S(\langle x\rangle_{\text{bin}}, \langle Q^2\rangle_{\text{bin}})$ with weighted average over $\,$ z, $P_{\,T}$

 $\blacksquare\,\mathrm{N}_1^\mathrm{dv}$

 $\blacksquare \sigma$

 \blacksquare g₂

 $\blacksquare\mathbf{N}_3^{\text{rv}}$

NonPerturbative evolution *g2*

summing over all (*x,Q2*) bins

consistent trend: larger $\sqrt{s} \longrightarrow$ larger covered (x,Q²) \longrightarrow more stringent constraint

NonPerturbative evolution *g2*

summing over all (*x,Q2*) bins

 \longrightarrow more stringent constraint

Caveat

- optimistic upper limit in reduction coeff. *R* (no correlation between measurements in different bins)
- exercise biased by rigidity of PV17 functional form; future fits with (many) thousands points could demand more flexible forms

Max error reduction *R* for PV17 parameters

PV17 fit: $\Delta g_2 = 0.01 \longrightarrow$ summing over all (*x*, Q²) bins $\longrightarrow 0.00155$ $R(g_2) = 6.45$

PV17 fit: $\Delta g_2 = 0.01 \longrightarrow$ summing over all (*x*, Q²) bins $\longrightarrow 0.00155$ $R(g_2) = 6.45$

summing over all $Q^2 \le 10$ bins $\longrightarrow 0.00218$ 71% *R*

 α summing over all (x, Q^2) bins $\longrightarrow 0.00155$ $R(g_2) = 6.45$ summing over all $Q^2 \le 10$ bins $\longrightarrow 0.00218$ 71% *R* PV17 fit: $\Delta g_2 = 0.01 \longrightarrow$ summing over all $10 \le Q^2 \le 100$ bins $\longrightarrow 0.00216$ 72% *R*

$$
\sqrt{s} = 28
$$
 GeV, π^+

 α summing over all (x, Q^2) bins $\longrightarrow 0.00155$ $R(g_2) = 6.45$ summing over all $10 \le Q^2 \le 100$ bins $\longrightarrow 0.00216$ 72% *R* summing over all $Q^2 \le 10$ bins $\longrightarrow 0.00218$ 71% *R* PV17 fit: $\Delta g_2 = 0.01 \longrightarrow$ summing over all $x \le 0.01$ bins $\longrightarrow 0.00306$ 51% *R*

$$
\sqrt{s} = 28
$$
 GeV, π^+

$$
\sqrt{s} = 28
$$
 GeV, π^+

good options at $\sqrt{s} = 140, x \le 0.01$ **but also at** $\sqrt{s} = 44, 0.01 < x \le 1$

good options at medium-large *x* and/or at low *Q*2

consistent trend: good option at $\sqrt{s} = 140, x \le 0.01$ **but doesn't need large Q²**

