Sartre Events for Proposal

Thomas Ullrich Exclusive WG

June 11, 2021

Sartre

diffractive vector meson production

 $e + A \rightarrow e' + A' + \gamma, \rho, \phi, J/\psi, \Upsilon$

- diffartive e+p and e+A
- determine the incoherent spectrum
 - nucleon fluctuations implemented
 - parton fluctuations will be introduced soon
- Publications:

 - 135277 e-Print: 1910.02899

Sartre is an implementation of the IPSat (aka bSat) model describing exclusive

Sartre is the only generator that entails saturated and non-saturated scenarios in

The generator goes beyond simple analytic mechanism and adds fluctuations that

• Sartre was key to diffractive studies in the White Paper and the Yellow Report

Exclusive diffractive processes in electron-ion collisions, Phys. Rev. C 87 (2013) 2, 024913 • e-Print: 1211.3048 The dipole model Monte Carlo generator Sartre 1, Comput. Phys. Commun. 185 (2014) 1835-1853 • e-Print: 1307.8059 Investigating saturation effects in ultraperipheral collisions at the LHC with the color dipole model, Phys. Lett. B 803 (2020)

Sartre - Details

- Sartre is not a monolithic program but a class library similar to Pythia8.
- most popular implementation
 - processing (see next slide)
- Sartre requires large lookup tables that contain the amplitudes. The generation of these tables is very expensive (~ MCPUh).
- Generating events with Sartre is fast due to the lookup tables!
- In principle Sartre produces only the vector meson but provides decay routines that include the proper angular distributions according to measurements at HERA
- tests to be concluded (Barak Schmookler/SBU).

• An example "main" program provided (sartreMain.cpp) appears to be the

It writes out the generated events as ROOT tree for easy analysis or further

 NEW: Sartre now allows to write the events in a generally accepted "EIC" format that can be directly read by eic-smear. This is ready but awaits some

Formats & Printouts

Sartre	prin	t-out:
--------	------	--------

Root file:

evt =	0	Q2 = 1.352 W = 37.436 t = -0.340 pol = T	x y xpom diff	= 9. = 0. = 8. = in	641e-04 177 048e-03 coherent		R = 0.1	00				
#	id	name	status	par	ents	daug	hters	рх	ру	pz	E	m
0	11	e-	4		_	2	3	0.000	0.000	-18.000	18.000	5.110e-04
1	1000791970	Au(197)	4	_	_	6	_	0.000	0.000	109.996	110.000	0.938
2	11	e-	1	0	_	—	_	0.826	-0.656	-14.795	14.833	5.110e-04
3	22	qamma	2	0	_	4	5	-0.826	0.656	-3.205	3.167	-1.163
4	443	J/psi	2	3	_	7	8	-0.280	0.853	-2.369	4.001	3.097
5	990	pomeron	2	3	3	6	_	-0.546	-0.197	-0.836	-0.834	-0.583
6	1000791970	Au(197)	2	1	5	_	_	-0.546	-0.197	109.160	109.166	0.939
7	11	e-	1	4		_	_	-0.310	1.247	-2.996	3.260	5.110e-04
8	-11	e+	1	4	-	—	_	0.030	-0.394	0.627	0.741	5.110e-04

eic-smear readable format (new):

Sai	tre	EVE	NT	FILE	=								_															
==== I,	iev	ent,	ge	neve	ent	, t	, Q2	=== , X		W2,	, nu	, xp	oom,	s,	pol,	dm	od,	bu	р									
I,	K(I	,1)	K(I,2))	K(I,	,3)	 K(I,4)	K	(I,5) P([I,1)	Ρ	9(I,2	2)	P(I	,3)	Ρ	(I,4	4)	P(I	, 5)	V ()	I,1)	V(I,	2)	١
0	0	1	-0.	3395	87	1.3	5155		0.00	00964	4081	0.	- 1770 -)11	140	1.4	3	747	.06	68	0.	0080)476	5	7920	.74	0	-
1 2 3 4 5 6 7 8 9	21 21 21 1 21 1 1 11 1 1	11 1000 22 11 990 1000 443 11 -11	0 0793 0 1 0793 0793 7 7	0 1970 0 0 1970 8 0 0	0 0 0 9 0	0 0 -0. 0.8 -0. 2 -0. -0. 0.0	0 8256 2563 5460 0 2795 3099 3041	-18 0 538 58 71 0 566 81 46	18 0 0.65 -0.6 -0.1 -0.5 0.85 1.24 -0.3	0.00 0 1 5622 55622 5968 5460 53099 53099 53099 53099	0510 09.9 5 -3 25 -3 74 -0 71 -0 9 -2 91 0	999 96 3.20 14.7 0.83 0.19 2.36 2.99 .626	0 110 95 5532 6874 944 643 985	0 00.9 14 -0 109 4.0 3.2	0 9382 1674 832 833 9.16 0013 2603 7410	7 3 954 109 8 1 71	0 -1 -0 -0 16 3.0 0.0	0 162 0005 582 0969 0005 0005	0 56 109 741 0. 2 109	0 999 10 9386 0 999	0 0 0 579 0 0 0	0 0 0 0 0	0 0 0	0				

V(I,3)1 0

Production available on EIC nodes

Sartre 1.34

/eic/data/ullrich/sartre

sartre/generator: event generator program (plus runcards

100M for $1 < Q^2 < 20 \text{ GeV}^2$ Root files (10M events each) & corresponding log files (cross-section!) and README file

sartre/reader: Example macro to read

Diffractive VM production in e+Au: $e + Au \rightarrow e' + Au' + \rho, \phi, J/\psi$

- sartre/data: 600M events, 200M for each VM where 100M photo,

More Details

- All events use KMW (Kowalski, Montyka, Watt) IPSat/IPNonSat parameters.
 - most complete set we have
 - not too granular
- new table production likely to not happen this year (very CPU intensive, many tables) has wiggles in incoherent spectrum - disappear with any realistic t resolution Decays only for main channel (decay angles according to HERA measurements)
 - J/psi to e e
 - phi to K K
 - rho to pi pi
- Real part and skewness correction were on if possible. Some datasets could not have them on since they needs ep tables with similar dimensions. Cross-section predictions are only reliable with corrections on (factor ~ 2)
- Photoproduction is not Q²=0 but approximated by 0.0001 < Q2 < 0.01 GeV
- Nuclear breakout was not switched on BeAGLE is more reliable here

More Details

More Details

- All events use KMW (Kowalski, Montyka, Watt) IPSat/IPNonSat parameters.
 - most complete set we have
 - not too granular
- new table production likely to not happen this year (very CPU intensive, many tables) has wiggles in incoherent spectrum - disappear with any realistic t resolution Decays only for main channel (decay angles according to HERA measurements)
 - J/psi to e e
 - phi to K K
 - rho to pi pi
- Real part and skewness correction were on if possible. Some datasets could not have them on since they needs ep tables with similar dimensions. Cross-section predictions are only reliable with corrections on (factor ~ 2)
- Photoproduction is not Q²=0 but approximated by 0.0001 < Q2 < 0.01 GeV
- Nuclear breakout was not switched on BeAGLE is more reliable here

Production to appear soon on EIC nodes

Diffractive VM production in e+Au: Sartre 1.35

Replicate same but also include eic-smear (EIC software) readable files.

$e + Au \rightarrow e' + Au' + \rho, \phi, J/\psi$

