FarBackward Working Group:

Luminosity measurement and low- Q^2 tagging in ATHENA

FarBackward WG: next meetings etc.

On June 18th a short talk by KP on photoproduction taggers at the *Exclusive Physics* WG – first (great) outcome: Glasgow group confirms full dedication to the HIHS-like device

On June 23rd FarBackward baseline "follow-up" discussion + planning for Summer + start planning for R&D

------ switching to summertime biweekly pace.

On July 7th (very) fast vs. full simulation needs and workplan + first (luminosity) data flow discussions

On July 21st we should **freeze** the luminosity detectors' setup + August 4th and 18th – series of updates on SR and designs of window + various detector components including results of new simulations

------ switching back

On Sep 1st we are back to weekly pace and should finalize discussions about "detectors' and tunnel infrastructure" aspects and overall costing + start writing up for Proposal

Reminder of the three representatives of FarBackward WG to the ATHENA Proposal Group:

- Costing: Mariusz Przybycien (AGH) - Integration: Jaroslav Adam (BNL) - Editing: Krzysztof Piotrzkowski (AGH)

FarBackward WG: energy flow vs. conversion counting

EF formula:

CC formula:

Note: geometrical A_{γ} > 99% and CF* = CF – ϵ , where CF ≈ 4% and $\epsilon \ll$ CF

Photon conversion rate = Luminosity × $\Delta \sigma$ × A_{γ} × CF × $A_{selection}$ × Corr_{pileup}

FarBackward WG: data-driven CC calibrating w/ PCALc

CC formula: Photon conversion rate = Luminosity × $\Delta \sigma$ × A_{γ} × CF × $A_{selection}$ × Corr_{pileup}

CF calibration with $\delta(\text{CF}) \ll 1\%$ is very tricky, but!

Using (very) low luminosity runs, one can select converted photons (using HS/CALup/down) and **measure** corresponding PCALc spectrum (+ check the total sum with ECAL) then: $\langle E_{\gamma,PCALc} \rangle = 9 \text{ CF/14} \langle E_{\gamma,spect} \rangle$!

Ex.: for CF=4%, the average PCALc energy is 2.6% of the tagged one – but one can use "zero" vs. "non-zero" counts as a measure of CF – 0.67 vs. $1.64*0.18+(0.18)^2$ (and it is pretty close to the EF method) – maybe one can x-check it with added 1/2/4% X₀ plates?

FarBackward WG: detector baseline for Proposal?

Who works on what (for Proposal)?

PCALf = tungsten spaghetti calorimeter with fused silica + SiPMTs ⇒ AGH UST

HSup + HSdown = 2 × up 10 planes of 1 mm square, straight scintillating fibers read out by SiPMTs ⇒ INP Krakow

CALup + CALdown + PCALc + ECAL = tungsten spaghetti calorimeters with Sci fibers read out by SiPMTs? ⇒ BNL?

FarBackward WG: tagging

"HIHS-like" super-hodoscope = (horizontal) vertex detector \Rightarrow Glasgow

 $ECAL - spaghetti W/Sci? \Rightarrow BNL?$

Note: tomorrow Exclusive WG will discuss "golden channels" and physics priorities

FarBackward WG: next steps

Need to plan (detector simulation) work in Summer

to start thinking about required R&D after the Proposal is sent out

+