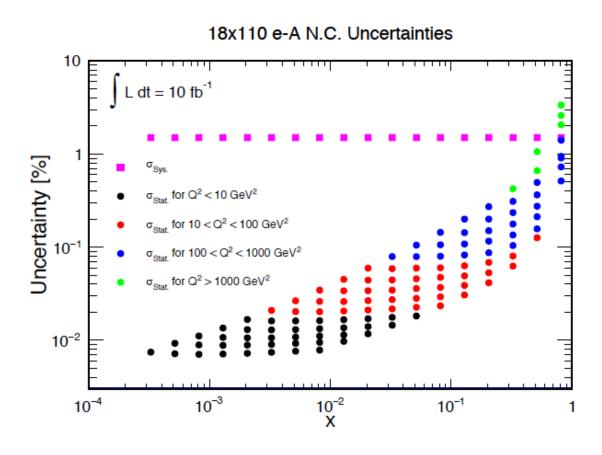
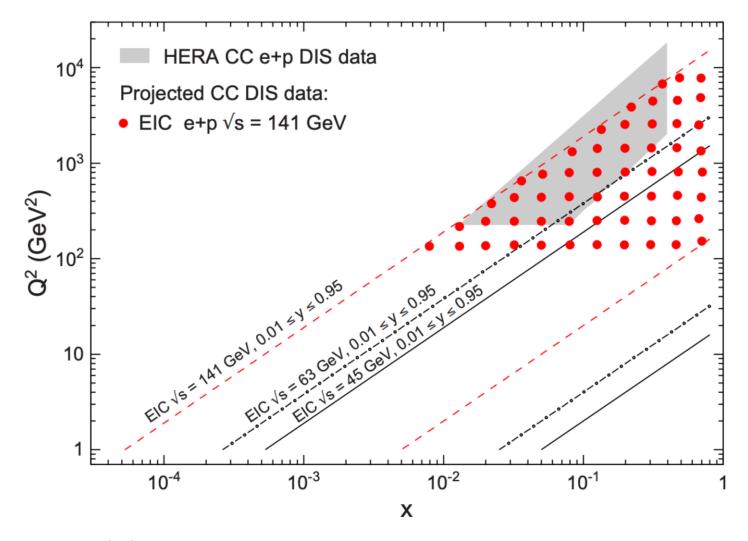

Statistical and Systematic Uncertainties in the yellow report


Barak Schmookler

N.C. kinematic coverage and binning

Estimated uncertainties for N.C. Cross sections

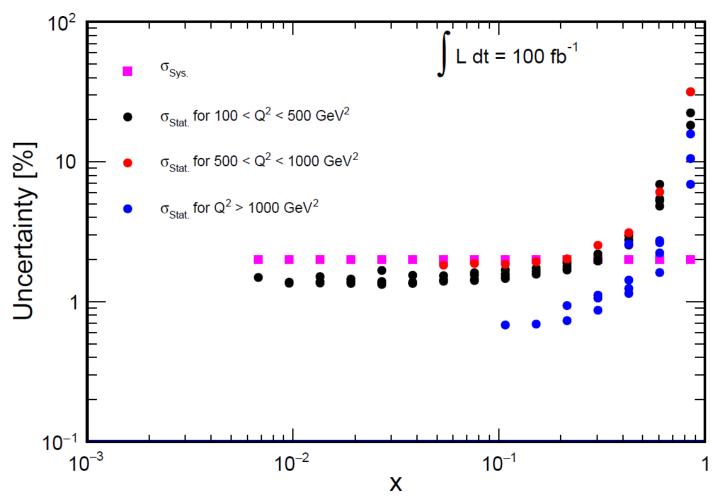

6/28/2021

3

N.C. systematic uncertainties

	Point-to-Point (%)	Normalization (%)
Statistics (10 fb ⁻¹)	0.01-0.35	-
Luminosity	-	~1
Electron Purity	-	~1 (for 90% purity)
Bin-Centering	<0.5	<0.5
Radiative Corrections (HERA)	1	-
Acceptance / Bin-Migration + Trigger & Tracking Eff. + Charge- Symmetric Background	1-2	2-4
Additional uncertainty for y<0.01 bins	2	-
Total	1.5-2.3 (2.5-3 for y<0.01)	2.5-4.3

C.C. kinematic coverage and binning


$$Q_{JB}^2 = \frac{p_T^2}{1 - y_{JB}}$$

$$y_{JB} = \frac{(E - p^z)}{2E}$$

$$x_{JB} = \frac{Q_{JB}^2}{sy_{JB}}$$

Estimated uncertainties for C.C. Cross sections

Minimum bias simulation data available from the yellow report effort

Data Set	Generator	Beam Energies	Run Information	Number of Events	Int. Luminosity
1	Pythia6	5x41 GeV e-	$Q^2 > 0.5 \text{ GeV}^2$; NC unpolarized; QED Radiation OFF	100 million	0.14 fb ⁻¹
2	Pythia6	5x41 GeV e-	$Q^2 > 3.0 \text{ GeV}^2$; NC unpolarized; QED Radiation OFF	100 million	0.96 fb ⁻¹
3	Pythia6	5x100 GeV e-p	$Q^2 > 0.5 \text{ GeV}^2$; NC unpolarized; QED Radiation OFF	15 million	0.016 fb ⁻¹
4	Pythia6	10x100 GeV e-p	$Q^2 > 0.5 \text{ GeV}^2$; NC unpolarized; QED Radiation OFF	11 million	9.9e-3 fb ⁻¹
5	Pythia6	10x110 GeV e-p	$Q^2 > 0.5 \text{ GeV}^2$; NC unpolarized; QED Radiation OFF	15 million	0.013 fb ⁻¹
6	Pythia6	18x110 GeV e-p	$Q^2 > 0.5 \text{ GeV}^2$; NC unpolarized; QED Radiation OFF	15 million	0.011 fb ⁻¹
7	Pythia6	18x275 GeV e-p	$Q^2 > 0.5 \text{ GeV}^2$; NC unpolarized; QED Radiation OFF	15 million	9.0e-3 fb ⁻¹
8	Pythia6	27.5x920 GeV e+p	$Q^2 > 1.5 \text{ GeV}^2$; NC unpolarized; QED Radiation OFF	10 million	0.011 fb ⁻¹

9	Djangoh	5x41 GeV e- p	Q ² > 0.5 GeV ² ; NC unpolarized; QED Radiation OFF	~10 million	0.014 fb ⁻¹
10	Djangoh	5x100 GeV e-p	Q ² > 0.5 GeV ² ; NC unpolarized; QED Radiation OFF	~10 million	0.011 fb ⁻¹
11	Djangoh	10x100 GeV e-p	$Q^2 > 0.5 \text{ GeV}^2$; NC unpolarized; QED Radiation OFF	~10 million	9.1e-3 fb ⁻¹
12	Djangoh	18x275 GeV e-p	Q ² > 0.5 GeV ² ; NC unpolarized; QED Radiation OFF	~10 million	6.6e-3 fb ⁻¹
13	Djangoh	27.6x920 GeV e+p	Q ² > 1.5 GeV ² ; NC unpolarized; QED Radiation OFF	~2.5 million	3.5e-3 fb ⁻¹
14	Pythia6	5x41 GeV e-	Q ² down to photo-production limit; NC unpolarized; QED Radiation OFF	500 million	6.3e-3 fb ⁻¹
15	Pythia6	10x100 GeV e-p	Q ² down to photo-production limit; NC unpolarized; QED Radiation OFF	300 million	2.3e-3 fb ⁻¹
16	Pythia6	18x275 GeV e-p	Q ² down to photo-production limit; NC unpolarized; QED Radiation OFF	300 million	1.7e-3 fb ⁻¹
17	Djangoh	10x100 GeV e-p	$Q^2 > 0.5 \text{ GeV}^2$; NC unpolarized; QED Radiation ON	~15 million	0.013 fb ⁻¹

Kinematic limits in the generators

- Pythia6 always applies a hard cut of W > 2 GeV; can go down to photo-production.
- Djangoh requires Q² > 0.2 GeV², and it always applies a hard cut of W > ~3.38 GeV.
- Not sure about pythia8...