A Gamble in the Fog Solar ⁸B Neutrino Search in XENON1T

Dark Matter

What is Dark Matter?

- Neutral: no EM interaction
- Stable: Lifetime > age of the Universe
- Massive: for structure formation
- Interaction besides Gravity ??

Direct Detection

Collider Searches

Indirect Detection

Direct Detection

Two-Phase TPCs

 2005-2007
 2008-2016
 2012-2018
 2019-202x

 25 kg - 15cm drift
 161 kg - 30 cm drift
 3.2 ton - 1 m drift
 8.6 ton - 1.5 m drift

 ~10⁻⁴³ cm²
 ~10⁻⁴⁵ cm²
 ~10⁻⁴⁷ cm²
 ~10⁻⁴⁸ cm²

XENON1T Systems

WIMP Search Result

Phys. Rev. Lett. 121, 111302 (2018)

1 Ton x Year Exposure of XENON1T

(blind analysis)

Source	1.3 t	1.3 t, NR Ref.	0.9 t, NR Ref.
ER	627 ± 18	1.6 ± 0.3	1.1 ± 0.2
Radiogenic	1.4 ± 0.7	0.8 ± 0.4	0.4 ± 0.2
CEvNS	0.05 ± 0.01	0.03 ± 0.01	0.02
Accidental	0.5 +0.3-0.0	0.10 +0.06-0.00	0.06 +0.03 -0.00
Surface	106 ± 8	4.8 ± 0.4	0.02
Total	735 ± 20	7.4 ± 0.6	1.6 ± 0.3
200 GeV WIMP	3.6	1.7	1.2
Data	739	14	2

No significant excess due to WIMPs

lots of constraints...

Physics Reach

WIMP Constraints

Phys. Rev. Lett. 121, 111302 (2018)

Phys. Rev. Lett. 122, 141301 (2019)

 σ < 46.3 x 10⁻⁴² cm² at 30 GeV/c²

CEvNS looks like WIMPs!

At low momentum-transfer the mediator wavelength is longer than the nuclear radius, neutrinos see the nucleus and not its constituents

Coherent \rightarrow sees nucleus as pointlike Α scattered Elastic \rightarrow no nuclear excitations neutrino Largely below 3 keV NRs in xenon Ζ nuclear boson recoil Α scattered light DM (~6 GeV) ?? nuclear recoil secondary recoils scintillation ⁸B solar neutrinos produce an *indistinguishable* econdar *background* for low-mass WIMP searches! recoils

scintillation

 $R = \phi(\nu) \times \sigma_{\nu} \times N_{Xe} \times \text{exposure}$ $\simeq 600 \text{ events}/(\text{tonne} \times \text{year})$

	Source	1.3 t	1.3 t, NR Ref.	
	ER	627 ± 18	1.6 ± 0.3	
	Radiogenie	1.4 ± 0.7	0.8 ± 0.4	
<	CEvNS	0.05 ± 0.01	0.03 ± 0.01	
Accidental		$0.5 + 0.3_{-0.0}$	$0.10 + 0.06_{-0.00}$	
	Surface	106 ± 8	4.8 ± 0.4	
	Total	735 ± 20	7.4 ± 0.6	
	200 GeV	3.6	1.7	
	Data	739	14	

Phys. Rev. Lett. 126, 091301 (2021) — Editor's Suggestion

Featured in *Physics Magazine*

RESEARCH NEWS Neutrinos Rising from the Floor

June 29, 2021

A neutrino background that could confound dark matter searches is now becoming an opportunity for probing new physics. **Read More** »

~ 0.01% acceptance!

Rate

number of recoils

Xenon Response

number of observables

Detection Efficiency

energy threshold

CEvNS

Rate

number of recoils

Xenon Response

number of observables (conservative model used)

Detection Efficiency

energy threshold (set high to cut background)

- ⁸B neutrino flux
- Cross-section (SM)

- Charge Yield
- Light Yield

- PMT Coincidence
- Software Event Trigger

How can we detect?

Charge Yield

- Need a model that matches measurements at CEvNS energies
- Existing model (NEST) additionally constrained through correlations with higher-energy data
- "Interpolation parameter" **q** is introduced to scale the curve within the NEST Qy uncertainty
- Fit to the data within 68% CEvNS containment, rescaled to units of sigma

68% CEvNS Containment

Light Yield

- Need a model that matches measurements at CEvNS energies
- Far more uncertain than Qy
- **Existing model** (NEST) less reliable

Two Models Used:

- 1. Scale NEST curve by a free parameter: CEvNS search, new physics searches
- 2. Single-valued Ly: Constraining Ly

CEvNS

NR Acceptance

Two Effects Define Our Energy Threshold:

- 1. S1 "Tight Coincidence": **Three PMTs** see light within 50ns
- 2. Software Event Trigger: Require S2s > 200 PE for 100% trigger efficiency

NR Acceptance

Two Effects Define Our Energy Threshold — We Modify Both:

- 1. S1 "Tight Coincidence": **Three Two PMTs** see light within 50ns
- Software Event Trigger: Require S2s > 200 120 PE, no longer ensuring the event makes a trigger

NR Acceptance

S1 Detection Efficiency

 $Z \in (-30, -10)$

Simulation

Detector

100

€ (-70, -5€

150

150

Data

Ŧ

• Small S1s are simulated with the waveform simulator

0.8

-0.6

-0.4

-0.2

0.8

-0.6

-0.4

-0.2

-0.0

S2 [PE]

200

0.0

• Cross-checked with data-driven approach by bootstrapping from large S1s

 $\Gamma 0 0$

100

_Z ∈ (-90, -70)

€ (-50, -30)

150

150

Triggered

S2

Triggered

S22

Fraction

0.4

-0.2

-0.0-

1.0

0.8

0.6

0.4

0.2

0.0

200

200

Fraction

 Small S2s are simulated with the waveform simulator and passed through the event builder

3

S1 Photons

- Validated against S2s extracted from events where S1 created the trigger
- Position dependence included

100

1.0

0.8

0.6

0.4

0.2

0.0

Trigger Efficien

0

Detection Efficiency

Waveform Simulation

Data-Driven

5

Four Backgrounds Modeled in XENON1T:

- 1. Accidental Coincidence (AC)
- 2. Electronic Recoils (²¹⁴Pb beta decay)
- 3. Radiogenic Neutrons
- 4. "Surface" Events

Reduced to < 0.04 events by R < 37cm cut

Source	Expectation	
CEvNS	2.25	
Accidental	5.14	
ER	0.21	
Radiogenic	0.03	
Surface	Negligible	
Total	7.65	

Four Backgrounds Modeled in XENON1T:

- 1. Accidental Coincidence (AC)
- 2. Electronic Recoils (²¹⁴Pb beta decay)
- 3. Radiogenic Neutrons
- 4. "Surface" Events

Very low but correlated with CEvNS through systematics (yields) so we model to be safe

Source	Expectation	
CEvNS	2.25	
Accidental	5.14	
ER	0.21	
Radiogenic	0.03	
Surface	Negligible	
Total	7.65	

Four Backgrounds Modeled in XENON1T:

- 1. Accidental Coincidence (AC)
- 2. Electronic Recoils (²¹⁴Pb beta decay)
- 3. Radiogenic Neutrons
- 4. "Surface" Events

Source	Expectation	
CEvNS	2.25	
Accidental	5.14	
ER	0.21	
Radiogenic	0.03	
Surface	Negligible	
Total	7.65	

1. Accidental Coincidence (AC)

Source	Expectation	
CEvNS	2.25	
Accidental	5.14	
ER	0.21	
Radiogenic	0.03	
Surface	Negligible	
Total	7.65	

Reduced tight-coincidence requirement and **S2 threshold** lead to ~100x increase!

AC Suppression: I

High energy events lead to subsequent AC events

- S1: More spurious PMT hits (unclear why)
- S2: More single electrons

The larger the previous event and...

...the **sooner** the suspect event follows it, the more likely it is AC:

Define FoM:

$$S2_{prev} / \Delta t_{prev}$$

- S1: 65% rejection \rightarrow 11.2 Hz
- S2: 0.7 mHz (1/3 of SI result)
- Removes S1-S2 correlations

AC Suppression: II

Use:

- 1. S2 Size
- 2. S2 Width
- 3. S2 Top/Total
- 4. Depth

Gradient Boosted Decision Tree (ensemble classifier)

Training Data:

- Waveform simulation for signal
- Randomly-combined isolated S1s and S2s for AC

Control Region: Approx. zero CEvNS events have S2 < 120 PE

Use to check AC prediction

AC Suppression: III

50

40

10

0

Counts / bin 30

Isolated S1s composed of dark counts **rarely contain > 2 PE hits** (1/100)

Signal S1s have a ~**20% DPE** probability per hit

Two "Largest Hit Area" Bins: LHA < 2 PE; LHA \ge 2 PE

Isolated S1s are roughly **evenly distributed across PMTs**, and **rarely contain three PMTs**; Signal S1s are **larger** and prefer **bottom PMTs**

Three "Hit Category" Bins

HC0: 2 Hits, 1+ in the top array of PMTs → Very AC-like

HC1: 2 Hits, 0 in the top array of PMTs → More Signal-like

HC2: 3 Hits (anywhere)

Unblinding Procedure

- 1. Investigate **Control Region** (80 PE < S2 < 120 PE)
 - Revise Selections
- 2. Unblind AC Validation Region (Invert GBDT Cut)
 - Test GoF
- 3. Unblind ROI

Control Region Investigation

80 PE < S2 < 120 PE: Very low signal expectation (<1%), High AC

Expected: 27.7 ± 1.4

Observed: 27

Four of these had two hits on a single PMT \rightarrow likely PMT afterpulses

→ New cut (> 99% acceptance)

Based on relative disagreement, conservative 20% AC rate uncertainty is used in the inference

GoF Scores:

Continuous Axes: p = 0.33

Six (HC x LHA) bins: p = 0.95

НС	LHA	Expected	Observed
0	≥ 2	0.23	0
0	< 2	9.37	10
1	≥2	0.07	0
1	< 2	3.93	4
2	≥ 2	0.00	0
2	< 2	0.03	0
	Total:	13.63	14

Data consistent with AC background (p > 0.05)

GoF Scores:

Continuous Axes: p = 0.72

Six (HC x LHA) bins:
$$p = 0.64$$

HC	LHA	BG	Signal	Observed
0	≥ 2	0.10	0.13	0
0	< 2	3.58	0.46	4
1	≥ 2	0.06	0.25	0
1	< 2	1.58	0.84	2
2	≥ 2	0.02	0.18	0
2	< 2	0.05	0.39	0
	Total:	5.38	2.25	6

CEvNS Constraints

Combination with various external data to learn about the solar flux and xenon response

Yield data (LUX / Livermore) + XENON1T → Flux < 1.4 x 10⁻⁷ / cm² s

Flux (Borexino) + Qy (Livermore) + XENON1T → Ly < 8.5 ph / keV

14 Qy 12 $\Phi_{\rm CE\nu NS}[10^6 {
m cm}^{-2} {
m s}^{-1}]$ 10 8 **XENON1T** + Qy + FluxXENON1T 2.Ŏ **Confidence Volumes** 1.5 1.0 0.5 Ъ 0.0 -0.5-1.0-1.5-2.03 8 9 Ly [ph / keV] (Flat)

(Single-Valued Ly)

WIMP Constraints

BNL Particle Physics Seminar — July 22, 2021

Neutrino Constraints

Relax SM CEvNS cross-section → constrain non-standard neutrino couplings to quarks

$$Q_w \to \widetilde{Q}_w = N(1 + 2\epsilon_{ee}^{uV} + 4\epsilon_{ee}^{dV}) + Z(4\sin^2\theta_w - 1 + 4\epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV})$$

Heavily statistics-limited — few t-y greatly increases the discovery power

Profiling over the constrained yields and considering CEvNS as a background improves low-mass **DM** limits

7.5

XENONnT: Coming Soon!

Commissioning since early 2021

- 4x higher fiducial mass
- Lower ER background

XENONnT: Coming Soon!

Commissioning since early 2021

Liquid xenon pumps and cryogenic filtration enable much faster purification

Joseph Howlett

- Increased discovery power achieved (20% chance of 3-sigma, 50% of 2-sigma) but no such luck
- Non-detection allows constraints on nuisance parameters, including a competitive Ly U.L.
- World-leading limit for low-mass (3-10 GeV) DM
- Discovery potential very high for next generation (coming soon!)
- High electron lifetime and mitigation of AC background essential
- Low-energy LXe light yield calibration would improve DM sensitivity

COHERENT CsI[Na] 2017 COHERENT LAr 2020

-0.5

0.0

 ε_{ee}^{dV}

0.5

CHARM

-1.0

1.0