Jet Calibration

Songkyo Lee Iowa State University

7th sPHENIX collaboration meeting Florida State University

December 6th 2018

Motivation

- Calorimeter response to a jet depends on
 - Jet kinematics, fragmentation pattern, etc.
 - Longitudinal center of gravity of the showers
 - Fraction between electromagnetic (EM) and hadronic energy

 Relative energy scales of different calorimetry segments, EMCAL, IHCAL, and OHCAL, needs to be adjusted

Calibration procedure 1/5

 EMCAL clusters with hadronic energy (E_{EMCal}^{had}) needs to be separated from those with EM energy (E_{EMCal}^{EM}) and calibrated individually

 $E^{RECO} = D \cdot (E_{EMCAL}^{EM} + A \cdot E_{EMCAL}^{had} + B \cdot E_{IHCAL} + C \cdot E_{OHCAL}) \qquad hadron \Rightarrow A B C$

Calibration procedure 2/5

 EMCAL clusters with hadronic energy (E_{EMCal}^{had}) needs to be separated from those with EM energy (E_{EMCal}^{EM}) and calibrated individually

Calibration procedure 3/5

 EMCAL clusters with hadronic energy (E_{EMCal}^{had}) needs to be separated from those with EM energy (E_{EMCal}^{EM}) and calibrated individually

Calibration procedure 4/5

 EMCAL clusters with hadronic energy (E_{EMCal}^{had}) needs to be separated from those with EM energy (E_{EMCal}^{EM}) and calibrated individually

1.2 1.4

0.08

0.06 0.04 0.02

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E_{EMCAL}/p

10

0.2 0.4 0.6 0.3

ECMOAL/P

4

Calibration procedure 5/5

 EMCAL clusters with hadronic energy (E_{EMCal}^{had}) needs to be separated from those with EM energy (E_{EMCal}^{EM}) and calibrated individually

• A, B, and C are simultaneously determined using MINUIT by minimizing the quantity

$$\Sigma_{i=1}^{N} (E_{\text{Jet},i}^{\text{Reco}} - E_{\text{Jet},i}^{\text{Truth}})^2 / (E_{\text{Jet},i}^{\text{Truth}})^2$$

Response after calibration

• Jet response vs. EM fraction flattened after calibration

JER in pp

- JER improved in all cases
- Smaller improvement when uninstrumented

Calibration in HI

0⁴

JER in pp vs. HI

- Improvement in JER after calibration both in pp and HI
- Larger JER for larger R jet at lower p_T in HI
- Shaded boxes represent uncertainties in the scaling constants

December 6th 2018

Decomposition of JER

- Calibration procedure is expected to only improve the pp-like part of the resolution, and not improve the part of the resolution coming from the UE
 - \rightarrow UE part remains the same after calibration? (next slide)

Decomposition of JER

 Decomposed resolution coming from the UE fluctuation is similar between before and after calibration as expected

