EIC Calorimetry WG Meeting

Imaging Calorimetry for Central EM Barrel

Maria Żurek | ANL

ANL EIC Calorimetry Team

W. Armstrong, S. Joosten, J. Kim, J. Metcalfe, Z.E. Meziani, C. Peng, M. Scott, M. Żurek

06/21/2021

Imaging calorimeter based on monolithic silicon sensors

2

AstroPix (developed for NASA, off-the-shelf)

- Have no stringent power and cooling requirements (used in space)
- Energy resolution: 2% within dynamic range (20 keV ~ a few MeV)
- Time resolution: 50 ns

ENERGY U.S. Department of Energy laborator mapaged by UChicago Argonne, U.C.

Ongoing design optimization using the simulation with IP6@EIC software framework with **AstroPix digitization**, **3D clustering**, **ML algorithms**, ... Tests against YR benchmarks: separation, shower separation, spatial and energy resolutions

SiFi/W Calorimeter

Alternative to use instead of W layers

SiFi/W Calorimeter

sPHENIX Calorimeter Parameters https://arxiv.org/pdf/1704.01461.pdf

Scintillating Fiber (Kuraray SCSF78) Diameter **0.47 mm**, spacing **1 mm** <u>http://kuraraypsf.jp/psf/sf.html</u> Absorber Matrix of Tungsten powder and epoxy w/embedded scintillating fibers

- Whole SPACAL block ~10 g/cm³ (~ half density of metallic tungsten)
- Tungsten powder: 11.25 g/cm³
- Sampling fraction for EM-showers ~ 2.3%
- Radiation length $X_0 \approx 0.7-0.8$ cm

TABLE I EMCAL BLOCK COMPONENT MATERIALS

Material	Property	Value
Tungsten powder	THP Technon 100 mesh	
	particle size	25-150 μm
	bulk density (solid)	$\geq 18.50 \text{ g/cm}^3$
	tap density (powder)	$\geq 11.25 \text{ g/cm}^3$
	purity	$\geq 95.4\%$ W
	impurities (\leq 5 percent)	Fe, Ni, O2, Co,
		Cr, Cu, Mo
Scintillating fiber	Kuraray SCSF78	
-	(single cladding, blue)	
Epoxy	EPO-TEK 301	

SiFi/Pb Calorimeter

GlueX Calorimeter Parameters

Table 1: Summary of BCAL properties.

Property	Value
Number of modules	48
Module length	$390~{\rm cm}$
Module inner/outer widths	84.0 mm/118.3 mm
Lead-scintillator matrix thickness	$221.9 \mathrm{~mm}$
Inner/outer Al plates thickness	$8 \mathrm{~mm}/31.75 \mathrm{~mm}$
Module azimuthal bite	7.5°
Total number of fibers	685000
Lead sheet thickness	$0.5 \mathrm{~mm}$
Kuraray SCSF-78MJ multi-clad fiber	$1.0 \mathrm{~mm}$
Fiber pitch radial/lateral	1.22 mm/1.35 mm
Weight fractions (% Pb:SF:Glue)	86.1: 10.5: 3.4
Effective density	4.88 g/cm^{3}
Effective Radiation Length	$1.45~\mathrm{cm}$
Effective Molière radius	$3.63~\mathrm{cm}$
Effective Atomic Weight	71.4
Effective Atomic Number	179.9
Sampling fraction	0.095
Total weight	28 t

~14,300 fibres per module (48 modules) 40 SiPMs x 4x4 x 3600 pixels per module

- Lightguides: from 21×21 mm² to 27×25 mm²
- SiPM sensor area: 13×13 mm²

- Layers of scintillating fibers embedded in absorber can be added to the current barrel calorimeter with choice of absorber, fiber spacing, radius, etc.
- Only fibers in absorber (no epoxy now)
- **Polygonal segmentation** on the side of the calorimeter staves (similar to GlueX)
- Currently 12 staves
- Digitization implementation in progress

6 imaging layers with SiFi/Pb with 1.5 cm SiFi/Pb: 6 x 2.25 cm = 13.53 cm

Layer of SiFi/Pb: 20.0 cm

Total: 33.53 cm

Sampling fraction electrons and photons

p0: fit to the sampling fraction (constant)

Photons

Electrons

Sampling fraction electrons and photons

Limit of the energy resolution Only Geant4 simulation information No digitization, light collection, calibration corrections

Photons

Limit of the energy resolution Only Geant4 simulation information No digitization, light collection, calibration corrections

Photons

Electrons

p0: stochastic term p1: constant term

