Magnetic field in Geant and DD4hep

Jaroslav Adam

BNL

July 14, 2021

Far-Backward meeting

Beam magnets in far-backward

- Q1eR, Q2eR, B2AeR, B2BeR magnets are simulated in Geant luminosity framework and in DD4hep
- Input is electron beam generated with nominal vertex spread, angular divergence and momentum spread
- The beam is captured at the front of Q3eR after passing through fields of Q1eR, Q2eR, B2AeR, B2BeR
- Shape of the beam is compared to lattice results for the front of Q3eR provided by Charlie Hetzel thanks:)
- Geant is compatible with lattice results
- DD4hep does not agree with lattice nor with Geant

Magnets location and fields

Name	<i>z</i> ₀ (m)	<i>z</i> 1 (m)	<i>d</i> ₀ (mm)	<i>d</i> ₁ (mm)	<i>B</i> (T or T/m)	<i>x</i> ₀ (m)	<i>x</i> ₁ (m)	θ_y (mrad
Q1eR	-5.3	-7.1	96	111	13.3153	0	0	0
Q2eR	-7.6	-9	129	129	-12.0595	0	0	0
B2AeR	-9.61	-11.39	140	140	0.192	0	0	0
B2BeR	-11.685	-14.865	196	196	0.238	0	0	0
Q3eR	-37.7	-38.3	100	100		-0.46003	-0.47087	18.08

Table: Start and end position along z is z_0 and z_1 . Same convention is used for diameter d and position in x.

Layout in Geant and DD4hep

- Q1eR, Q2eR, B2AeR, B2BeR magnets are shown as cylinders
- Rectangular marker at the front of Q3eR captures the beam

and the second s

Figure: DD4hep layout

Beam shape at Q3eR from Geant

	μ_{x} (mm)	$\mu_{m{y}}$ (mm)	$3\sigma_x$ (mm)	$3\sigma_y$ (mm)
Lattice reference	0	0	10.19	0.41
Geant results	$\textbf{-2.733} \pm \textbf{0.025}$	$\textbf{-0.003} \pm \textbf{0.001}$	10.247 ± 0.062	$\textbf{0.379} \pm \textbf{0.003}$

- Comparison to lattice calculation
- Slight offset in x vs. lattice
- Good agreement for beam width

Figure: Beam along *x* in Geant

Figure: Beam along y in Geant

Beam shape at Q3eR from DD4hep

	μ_{x} (mm)	$\mu_{m{y}}$ (mm)	$3\sigma_x$ (mm)	$3\sigma_y$ (mm)
Lattice reference	0	0	10.19	0.41
Geant results	$\textbf{-2.733} \pm \textbf{0.025}$	$\textbf{-0.003} \pm \textbf{0.001}$	10.247 ± 0.062	0.379 ± 0.003
DD4hep results	$\textbf{-2.806} \pm \textbf{0.046}$	$\textbf{-0.002} \pm \textbf{0.049}$	11.749 ± 0.114	$\textbf{2.283} \pm \textbf{0.119}$

- Fit to beam position on the front of Q3eR
- Comparison to lattice calculation and Geant
- Mean and *σ_x* is consistent with Geant
- Width in *y* is not a Gaussian, looks like Breit-Wigner
- Not compatible with Geant nor with lattice

Figure: Beam along x in DD4hep

Figure: Beam along y in DD4hep

Jaroslav Adam (BNL)

July 14, 2021 6/7

Gaussian fit

Summary

- Same hepmc3 input file is used with Geant and DD4hep
- Same physics list (FTFP_BERT) and random seed are set in both simulations
- Identical Geant version (10.7.p01) was used to build the DD4hep (and Athena framework)
- Geant agrees with lattice calculations
- Quadrupoles have to be rotated by 90 degrees along z to get the same convention as comes from lattice
- The rotation is achieved either in magnet placement or by inverting the sign of field gradient
- Beam shape after the magnets from DD4hep is not compatible with expectation from lattice calculations and not compatible with Geant results
- As of now I have no idea about the origin of the disagreement
- Codes used to run DD4hep, including input beam data are provided on indico along these slides