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Initialization

The simulation is such that [one] generally perceives the sum of
many billions of elementary processes simultaneously, so that the
leveling law of large numbers completely obscures the real nature
of the individual processes.

John von Neumann

Thanks to substantial investments into computer technology,
modern artificial intelligence (AI) systems can now come
equipped with many billions of elementary components.

I Behind much of this success is deep learning: deep learning
uses artificial neural networks as an underlying model for AI.
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Initialization: Artificial Intelligence

Some functions are easily described in terms of elementary
operations {+,−,×,÷}:

f (x) =
∞∑

k=0

xk

k! f (x) = x ,

I Although there’s an ∞ of terms, for many purposes it only
takes a few terms to get a useful approximation.

I The description of the function only takes 1 in on the screen.?

? depending on the size of your monitor.
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Initialization: Artificial Intelligence

Some functions cannot be described by {+,−,×,÷} on any slide:

f (x) =

1 , x =
{

, , . . .
}
,

0 , x 6=
{

, , . . .
}
.

I It’s clear that such a function can exist – humans do it! – but
unclear how to represent in terms of elementary operations.

I AI is about functions of this sort – easy for humans to
compute, but hard for humans to describe by {+,−,×,÷}.
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Initialization: Neural Networks
= A neural network is a recipe for computing a function built out
of many computational units called neurons:

Neurons are then organized in parallel into layers, and deep neural
networks are those composed of multiple layers in sequence.
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Neural Networks Abstracted

For a moment, let’s ignore all that structure and simply think of a
neural network as a parameterized function,

f (x ; θ) ,

where x is the input to the function and θ is a vector of a large
number of parameters controlling the shape of the function.
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Neural Networks Abstracted: Function Approximation

For such a function to be useful, we need to tune the
high-dimensional parameter vector θ:

I First, we choose an initialization distribution by randomly
sampling the parameter vector θ from a computationally
simple probability distribution,

p(θ) .

I Second, we adjust the parameter vector as θ → θ?, such that
the resulting network function f (x ; θ?) is as close as possible
to a desired target function f (x):

f (x ; θ?) ≈ f (x) .

This is called function approximation.
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Neural Networks Abstracted: Training

To find these tunings θ?, we fit the network function f (x ; θ) to
training data, consisting of many pairs of the form

(
x , f (x)

)
observed from the desired – but only partially observable – target
function f (x).

I Making these adjustments is called training.
I The particular procedure used to tune them is called a

learning algorithm.
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Initialization: Goals

The goal of this talk is to explain a set of principles that enable us
to theoretically analyze deep neural networks of actual relevance.
To initialize you to this task, we’ll try to explain

(i) why such a goal is even attainable in theory, and
(ii) how we are able to get there in practice.
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The Theoretical Minimum

Our goal is to understand this trained network function:

f (x ; θ?) .

One way to see the kinds of technical problems that we’ll encounter
in pursuit of this goal is to Taylor expand our trained network
function f (x ; θ?) around the initialized value of the parameters θ

f (x ; θ?) =f (x ; θ) + (θ? − θ) df
dθ + 1

2 (θ? − θ)2 d2f
dθ2 + . . . ,

where f (x ; θ) and its derivatives on the right-hand side are all
evaluated at initialized value of the parameters.
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The Theoretical Minimum: Problem 1

In general, the Taylor series contains an infinite number of terms

f , df
dθ ,

d2f
dθ2 ,

d3f
dθ3 ,

d4f
dθ4 , . . . ,

and in principle we need to compute them all.
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The Theoretical Minimum: Problem 2

Since the parameters θ are randomly sampled from p(θ), each time
we initialize our network we get a different function f (x ; θ), and we
need to determine the mapping:

p(θ)→ p
(

f , df
dθ ,

d2f
dθ2 , . . .

)
.

This means that each term f , df /dθ, d2f /dθ2, . . . , in the Taylor
expansion is really a random function of the input x , and this joint
distribution will have intricate statistical dependencies.
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The Theoretical Minimum: Problem 3

The learned value of the parameters, θ?, is the result of a
complicated training process. In general, θ? is not unique and can
depend on everything:

θ? ≡ [θ?]
(
θ, f , df

dθ ,
d2f
dθ2 , . . . ; learning algorithm; training data

)
.

Determining an analytical expression for θ? must take “everything”
into account.
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Goal, restated

If we could solve all three of these problems, then we’d have a
distribution over trained network functions

p(f ?) ≡ p
(

f (x ; θ?)
∣∣∣ learning algorithm; training data

)
,

now conditioned in a simple way on the learning algorithm and the
data we used for training.

The development of a method for the analytical computation of
p(f ?) would let us understand AI systems and then let us use that
knowledge to improve them.
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“There ain’t no such thing as a free lunch.” (TANSTaaFL)

[Heinlein, Wolpert/Macready]
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Why is AI (naively) hard?

I No “best” AI system when you average over all possible
training examples and tasks.

I No matter how much we improve our tools for understanding,
these improvements can do no better than random.
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Some “examples”
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What do humans do?

= ?
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What don’t humans do. . .

a b c d a b c d

d c b a b d c a

. . . but Neural Networks can!

[Zhang/Bengio/Hardt/Recht/Vinyals]

This is why (understanding how) AI (works) is hard.

19 / 40



What don’t humans do. . .

a b c d a b c d

d c b a b d c a

. . . but Neural Networks can!

[Zhang/Bengio/Hardt/Recht/Vinyals]

This is why (understanding how) AI (works) is hard.

19 / 40



What don’t humans do. . .

a b c d a b c d

d c b a b d c a

. . . but Neural Networks can!

[Zhang/Bengio/Hardt/Recht/Vinyals]

This is why (understanding how) AI (works) is hard.

19 / 40



Why can we learn physics?

The reason the laws of physics are even learnable at all is because
the models we used to describe the universe are particularly simple
models within the frameworks we used to enumerate the possible
theories of physics.
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LSM = LDirac + Lmass + Lgauge + Lgf + LHiggs
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R /∂ui
R + +i d̄ i

R /∂d i
R

Lmass = − v
(
λ

i
e ēi
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ν , W ±
µν ≡ ∂µW ±

ν −∂ν W ±
µ , Zµν ≡ ∂µZν−∂ν Zµ, Fµν ≡ ∂µAν−∂ν Aµ
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Physics is simple?

Actually quite simple considering it has the ability to describe
almost every experiment that we could perform.

Thus, useful physical theories are sparse: we can organize
according to a local action, where interactions happen between an
O(1) number of particles at a point in spacetime.
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Problems in Understanding Deep Learning
I Problem 1, we need to compute an infinite number of terms:

f , df
dθ ,

d2f
dθ2 ,

d3f
dθ3 ,

d4f
dθ4 , . . . .

I Problem 2, each time we initialize our network we get a
different function f (x ; θ), and we need to determine the map:

p(θ)→ p
(

f , df
dθ ,

d2f
dθ2 , . . .

)
.

I Problem 3, The learned value of the parameters, θ?, is the
result of a complicated training process:

θ? ≡ [θ?]
(
θ, f , df

dθ ,
d2f
dθ2 , . . . ; learning algorithm; training data

)
.
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Fine, Structure
Solving our three problems for a general parameterized function
f (x ; θ) is not tractable. However, we only care about the functions
that are deep neural networks:

To make progress we will have to make use of the particular
structure of neural-network function.
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Fine, Structure
Two essential aspects of a neural network architecture are its
width, n, and its depth, L.
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A Principle of Sparsity
There are often simplifications to be found in the limit of a large
number of components.

It’s not enough to consider any massive macroscopic system, and
taking the right limit often requires some care.
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A Principle of Sparsity
In this case, the n =∞ will make everything really simple, while
the L =∞ will be hopelessly complicated and useless in practice.
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The Infinite-Width Limit

Let’s begin by formally taking the limit

lim
n→∞

p(f ?) ,

and studying an idealized neural network in this limit.

I This is known as the infinite-width limit of the network, and
as a strict limit it’s rather unphysical for a network: obviously
you cannot directly program a function to have an infinite
number of components on a finite computer.

I However, this extreme limit does massively simplify the
distribution over trained networks p(f ?), rendering each of our
three problems completely benign.

[Neal, Lee/Bahri/. . . , Matthews/. . . , Jacot/. . . , . . . ]
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Simplicity at Infinite Width
I Addressing Problem 1, higher derivative terms will effectively

vanish, and we only need to keep track of two terms:

f , df
dθ .

I Addressing Problem 2, the distributions of these random
functions will be independent,

lim
n→∞

p
(

f , df
dθ ,

d2f
dθ2 , . . .

)
= p(f ) p

(df
dθ

)
,

with each marginal distribution factor taking a simple form.
I Addressing Problem 3, the training dynamics become linear

and independent of the details of the learning algorithm,
giving θ? in a closed form analytical solution:

lim
n→∞

θ? = [θ?]
(
θ, f , df

dθ ; training data
)
.
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Simplicity at Infinite-Width

These simplifications are the consequence of a principle of
sparsity, and the fully-trained distribution,

lim
n→∞

p(f ?) ,

is a simple Gaussian distribution with a nonzero mean.
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Too Much Simplicity at Infinite-Width

The formal infinite-width limit, n→∞, leads to a poor model of
deep neural networks in practice:

I The distribution over real trained networks does depend on
the properties of the learning algorithm used to train them.

I Infinite-width networks don’t have representation learning:
for any input x , its transformations in the hidden layers, z(1),
z(2), . . . , z(L−1), will remain unchanged from initialization.

The central limiting problem is that the input of an infinite number
of signals is such that the leveling law of large numbers completely
obscures the subtle correlations between neurons that get amplified
over the course of training for representation learning.
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Aside: Representation Learning

In the typical discussion of representation learning, we start with
the fine-grained representation of an input such as an image in
terms of its pixels:

x = .

For a classification task, a network might output a coarse-grained
description of that image:

f (x) = cat .

In between, the signals at the hidden-layer neurons form
intermediate representations.
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The formal infinite-width limit, n→∞, leads to a poor model of
deep neural networks in practice:

I The distribution over real trained networks does depend on
the properties of the learning algorithm used to train them.

I Infinite-width networks don’t have representation learning:
for any input x , its transformations in the hidden layers, z(1),
z(2), . . . , z(L−1), will remain unchanged from initialization.

The central limiting problem is that the input of an infinite number
of signals is such that the leveling law of large numbers completely
obscures the subtle correlations between neurons that get amplified
over the course of training for representation learning.
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Interacting Neurons

We’ll need to find a way to restore and then study the interactions
between neurons that are present in realistic finite-width networks.

To do so, we can use perturbation theory and study deep
learning using a 1/n expansion, treating the inverse layer width,
ε ≡ 1/n, as our small parameter of expansion:
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n→∞

p(f ?)
}

+ p{1}(f ?)
n + p{2}(f ?)

n2 + . . . ,

34 / 40



Interacting Neurons

We’ll need to find a way to restore and then study the interactions
between neurons that are present in realistic finite-width networks.

To do so, we can use perturbation theory and study deep
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Near-Simplicity at Finite Width
I Addressing Problem 1, most derivatives will contribute as

O
(
1/n2) or smaller, so we only need to keep track of 4 terms:

f , df
dθ ,

d2f
dθ2 ,

d3f
dθ3 .

I Addressing Problem 2, the distribution of these random
functions at initialization will be nearly simple at order 1/n:

p
(

f , df
dθ ,

d2f
dθ2 ,

d3f
dθ3

)
,

I Addressing Problem 3, the nonlinear training dynamics can
be tamed with dynamical perturbation theory, giving θ? in a
closed form analytical solution:

θ? = [θ?]
(
θ, f , df

dθ ,
d2f
dθ2

d3f
dθ3 ; learning algorithm; training data

)
.
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Near-Simplicity at Finite Width

These near-simplifications are a further consequence of the
principle of sparsity, and our dual effective theory description of
the fully-trained distribution at order 1/n,

p(f ?) ≡
{

lim
n→∞

p(f ?)
}

+ p{1}(f ?)
n + O

( 1
n2

)
,

will be a nearly-Gaussian distribution.
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The Role of Depth as the Effective Theory Cutoff

An important byproduct of the analysis is a careful understanding
of the deep in deep learning. Defining the aspect ratio

r ≡ L/n ,

we can recast our understanding of infinite-width vs. finite-width
and shallow vs. deep:

Networks of practical use have small aspect ratios: r ∼ r? � 1.
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An important byproduct of the analysis is a careful understanding
of the deep in deep learning. Defining the aspect ratio

r ≡ L/n ,

we can recast our understanding of infinite-width vs. finite-width
and shallow vs. deep:

I In the strict limit r → 0, the interactions between neurons
turn off: the infinite-width limit is actually a decent
description, but these networks are not really deep, as their
relative depth is zero: L/n = 0.

Networks of practical use have small aspect ratios: r ∼ r? � 1.
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An important byproduct of the analysis is a careful understanding
of the deep in deep learning. Defining the aspect ratio

r ≡ L/n ,

we can recast our understanding of infinite-width vs. finite-width
and shallow vs. deep:

I In the regime 0 < r � 1, there are nontrivial interactions
between neurons: the finite-width effective theory truncated
at order 1/n gives an accurate accounting p(f ?). These
networks are effectively deep.

Networks of practical use have small aspect ratios: r ∼ r? � 1.

37 / 40



The Role of Depth as the Effective Theory Cutoff

An important byproduct of the analysis is a careful understanding
of the deep in deep learning. Defining the aspect ratio

r ≡ L/n ,

we can recast our understanding of infinite-width vs. finite-width
and shallow vs. deep:

I In the regime r � 1, the neurons are strongly coupled:
networks will behave chaotically, and there is no effective
description due to large fluctuations from instantiation to
instantiation. These networks are overly deep.
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The Principle of Sparsity and Model Complexity

Consider a fixed combined training and test dataset of size ND:

I For the infinite-width Gaussian distribution, we only need

noutNA +
[ND(ND + 1)

2

]
+
[ND(ND + 1)

2

]
= O

(
N2
D

)
numbers in order to completely specify the distribution.
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The Principle of Sparsity and Model Complexity

Consider a fixed combined training and test dataset of size ND:

I For the finite-width nearly-Gaussian distribution with
0 < r � 1, we will instead need O

(
N4
D
)

numbers, with the
counting dominated by the finite-width tensors.
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Consider a fixed combined training and test dataset of size ND:

I For an accuracy O
(

Lk/nk
)

, a macroscopic description

p
(

z(∞)
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=
k∑

m=0

p{m}
(

z(∞)
)

nm + O
(

Lk+1
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)
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p{m}
(

z(∞)
)

nm + O
(

Lk+1

nk+1

)
,

will need O
(

N2k
D

)
numbers in general.

I The 1/n expansion gives a sequence of effective theories with
increasing accuracy at the cost of increasing complexity.
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The Principle of Sparsity and Model Complexity

As r increases, we’ll need to include more of these higher-order
terms, making our effective theory description more complex:

I In the strict limit r → 0, the sparse O
(
N2
D
)

Gaussian
description of the infinite-width limit will be accurate.

I In the regime 0 < r ∼ r? � 1, the nearly-sparse O
(
N4
D
)

nearly-Gaussian description of the finite-width effective
theory truncated at order 1/n will be accurate.

I For larger r , a more generic O
(
N2k
D
)

non-Gaussian
description would in principle be necessary.
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Conclusion

The practical success of deep learning in with large numbers of
parameters is really telling us that useful theories of neural
networks should be sparse – but not too sparse – so that they are
also deep.

Thank You!
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