

IP-6: 0.5m Shift in Outgoing Hadron Beam Direction

Holger Witte Brookhaven National Laboratory Electron-Ion Collider Department

1

Introduction

- Request from Physics community
 - Need 0.5m more space for detector on forward side
- Effects have been studied
 - Leave magnet apertures unchanged
- Results
 - Lattice/Match
 - Magnets / magnet locations
 - Synrad
 - Effect on physics results/clipping
- About to submit to Change Control Board
 - Reminder: this does not have to be perfect
 - (there should be no show-stoppers though)

IR Region

(Note: in this picture you are looking from the bottom up from RHIC)

Space for detector grows in forward direction by 0.5m

Lattice

- Acceptance studies with initial lattice
 - Magnets not properly aligned
 - Can probably do a bit better
- Figure on the bottom shows most recent lattice in comparison to initial lattice
 - This is not going to make results worse
- Both lattices matched to RHIC

By J.S. Berg

Hadron Lattice

BROOKHAVEN NATIONAL LABORATORY

Before

After

Same β^* Larger β in low-beta quad on forward side (larger beam size) Magnet apertures unaffected

By J.S. Berg

12 July 2021

Electron Lattice

BROOKHAVEN NATIONAL LABORATORY

Same β*

By J.S. Berg

12 July 2021

Back to the Hadron Lattice...

So why does the vertical β function not increase?

- ... because it is not a true comparison B0pF magnet has a small vertically focusing gradient (which helps arresting the growth of the β function)
 - Increase is only from 1179 to 1209m (hard to see)

By J.S. Berg

Chromaticities

- Hadrons
 - Increase by 0.3/0.8 units (hor./vert.)
 - Totals:
 - Crab to crab: 11.4/22.3
 - Arc-to-arc: 27.1/24.8
- Electrons
 - Increase 0.4/1.0
 - Total: 15.9/23.9

By J.S. Berg

By C. Hetzel /

M. Sullivan

Synchrotron Radiation

- Studied using Synrad3D
- Small changes in Synrad
- No significant increase in photon hits in central chamber
 - ... and can probably still be improved

Field Integral

Magnets

- Apertures and gradients/fields stay the same*
- Spacing between hadron and electron beam increases (approx. 12mm)
- Not worse / slightly easier

Apertures Electron Forward

BROOKHAVEI NATIONAL LABORATO

- Apertures: 13.5σ /23σ
- 275GeV on 18 GeV
 - Q0eF: 24.4 mm \rightarrow 26.6 mm
 - Radius is 25mm
 - Aperture can grow, minimal impact on space in B0pF
 - Q1eF: 52.6 mm \rightarrow 54.6 mm
 - Radius is 63mm
 - (275 / 10 GeV: 56.1mm → 58.5mm)

Acceptance Studies

- Checked with two codes
 - BMAD general purpose tracking code
 - Geant4 (friends from Physics)
- Cross-check allowed to identify error
 - Now perfect agreement

Generate cone for particles with $p_t=1.3GeV$ Rendered in CAD program with magnet apertures

Summary of Detector Acceptance

 Some very small amounts of clipping are observed on the edges (at phi = 0 and phi = pi), but overall the acceptance is 100% up to pt ~ 1.2 GeV/c

٠

Summary

- Cannot go much further without significant effort
 - Probably the right time to present this to the TCC
- No showstoppers
 - Lattice looks ok
 - Detector acceptance looks ok
 - (N.b.: bug in early results, which were too pessimistic)
 - Synrad looks ok
 - Magnets unchanged