# IP8 Secondary Focus xL Coverage

Alex Jentsch 7/12/2021

# Preliminaries

- Using the same IP8 lattice shown at the FF cross-collaboration meeting (<u>https://indico.bnl.gov/event/12068/)</u>.
  - Results of my previous comprehensive acceptance studies are on the Indico, as well as details for the detector assumptions I used.
- There are some notable changes when using the correct IP8 optics numbers (compared to the IP6 ones).
  - Larger dispersion @ RPSF: Causes the  $10\sigma$  to be larger.
  - Now using the correct beta-functions at the RPSF also causes the  $10\sigma$  to be larger (the beta-functions are a bit larger at the SF than at the IP, using IP6 numbers for comparison).
  - Beta functions at the drift RP are very different in x and y, with that difference getting smaller further downstream -> causes anisotropic acceptance in phi. Could re-think placement (in z) of drift RP to try and find optimal spot.

# $10\sigma$ Calculation

- We have normally quoted the transverse beam size as  $\sigma_{x,y} = \sqrt{\beta(z)_{x,y}} \epsilon_{x,y}$ , but this is only approximately true if the dispersion is very small, or if the beta-function times emittance is very large in comparison.
  - Correct formula,  $\sigma_{x,y} = \sqrt{\beta(z)_{x,y}\epsilon_{x,y}} + \left(D_{x,y}\frac{\Delta p}{p}\right)^2$ .
  - The second term is very small compared to the first in the case of the normal RP, so  $\sigma_{x,y} = \sqrt{\beta(z)_{x,y}\epsilon_{x,y}}$  is a perfectly fine approximation to quote in that case.
  - However, at the RPSF, this second term is large enough to affect the total transverse beam size.
- The previous preliminary study used the IP6 beta-functions and dispersion values at both the RP drift location, and the RPSF locations (the optics numbers were not yet available for IP8 at the time of that study).
  - The results presented here use the IP8 numbers with the present IP8 lattice.



### Drift Roman Pots (z = 26m)



### Drift Roman Pots (z = 30m)

## Roman Pots @ SF







# Summary

- The secondary focus provides a significant improvement in coverage of xL for protons.
- Finding a "sweet spot" for the RP drift detectors will require optimization.
  - In general, closer to the last dipole before the drift seems a bit better.
- It would still be wise to have both detectors working together to maximize total phase space coverage in xL and pT.

# Backup

#### 1D Kinematic Plots – RP Drift



## 1D Kinematic Plots – RPSF

