Compton Polarimeter Layout and Detectors

Detect both backscattered photon and scattered electrons

 \rightarrow Electrons: position sensitive detectors in horizontal direction (P_L only)

→ Photons: position sensitive detector (x) for P_T measurement calorimeter → P_L

Position Sensitive Detectors

Position sensitive detectors required both for scattered electron and backscattered photon Electrons:

Need to capture asymmetry endpoint and zero-crossing with at least 30 bins

- \rightarrow Lowest energy (5 GeV) drives segmentation: 400 μ m
- \rightarrow Highest energy drives size: 6 cm

Photons:

- \rightarrow Need sufficient resolution to fit transverse asymmetry spectrum: ~500 μ m
- → Size driven by backscattered photon cone: ~ 5 cm

Need to measure polarization bunch-by-bunch: <10 ns response times Radiation hard: avg. of 1 event per bunch crossing at 100 MHz

Considering diamond strips or Si for both detectors (the photon detector would need a preshower)

5GeV at photon detector location

5GeV at photon detector location transverse

Photon Calorimeter

Photon detector will likely be used in "event mode" to measure the differential asymmetry spectrum

- → Backgrounds likely too large to use integrating method
- → Differential method sensitive to precise knowledge of detector threshold → good resolution important
- → Need to detect photons over the range ~0 to 7 GeV

Like position detectors, need radiation hard detector \rightarrow order 10 MRad/year just from Compton photons

Also need <10 ns time response (bunchby-bunch measurement)

Lead-tungstate? \rightarrow 4 x 4 cm, 20 cm long

5GeV at photon detector location longitudinal

Hadron Polarimeter

Hadron polarimeter will need ~ 1 meter of the incoming hadron beamline for the target station and detector readout.