Athena FarBackward Working Group:

Luminosity measurements and low- Q^2 tagging

FarBackward WG: need for three luminosity methods

Luminosity measurements at the EIC are very challenging: huge event rates + wide electron beam energy range (5... 10... 18 GeV) + wide spectrum of nuclei species (from p to Au) \Rightarrow need to go beyond ZEUS/HERA approach, and use three largely complementary bremsstrahlung measurements

- 1. Reference measurement photon **counting** with a movable calorimeter PCALc (at very low *L*)
- 2. Photon conversion **counting** using $CAL_{up/down} + HS_{up/down}$ (outside SR plane)
- 3. Photon energy flow, or (E_{PCALf}), using a movable calorimeter PCALf, with SR filters/monitors in front

FarBackward WG: Hodoscopes & PCALf

PCALf: for 10 × 275 GeV *ep* (E_{PCALf}) ≈ 50 GeV \Rightarrow huge irradiations ≈ 100 Mrad/100 fb⁻¹ \Rightarrow tentative solution – a tungsten spaghetti calorimeter with fused silica + SiPMTs (AGH UST)

 $HS_{up} + HS_{down}$: have to deal with a significant *event pileup*, ≈ 0.1 for *ep* and about 2 for *eAu* \Rightarrow tentative solution – 2 × up to 10 planes of 1 mm square, straight scintillating fibers read out by SiPMTs (INP Krakow)

FarBackward WG: CAL_{up/down} + PCALc

A similar energy resolution of about 10%/VE should be required for the three calorimeters PCALc + CAL_{up/down} + a very good linearity well below 0.1 GeV for PCALc, and rather high segmentation for CAL_{up/down}

Event rates for CAL_{up/down} are around 100 MHz, and the expected maximal irradiation is less than 1 Mrad per 100 fb⁻¹ for *ep* collisions

FarBackward WG: Bremsstrahlung electrons & photoproduction tagging

HIHS – a very high resolution hodoscope \Rightarrow a (horizontal) vertex detector – essential for an efficient photoproduction tagging at the EIC, in particular for *eAu* collisions

ECAL (one or two?) – have different geometries than from PCALc or $CAL_{up/down}$ but similar energy resolution is expected, however the event pileup in ECAL is **large**, especially for *eAu* collisions, and in addition events are strongly "collimated" in the EIC plane \Rightarrow higher radiation resistance is required (scintillators excluded?) as well as highly segmented detectors

