Athena Exclusive&Diffractive meeting

25<sup>th</sup> June 2021



Pretious input on the implications to EIC from

Paul Newman <a href="https://indico.bnl.gov/event/11970/">https://indico.bnl.gov/event/11970/</a>

Krzysztof Piotrzkowski <u>https://indico.bnl.gov/event/12229/</u>

Which HERA topics call for further development?

- Unanswered questions
- Lack of statistics
- Not fully addressed

# HERA Legacy in diffraction

- Rapidity gaps at HERA unexpected!
- Diffractive Parton Distribution Functions (DPDFs)
- Mechanisms of factorization breaking in lepton-hadron vs hadron-hadron collisions - rescattering effects
- Towards Generalised Parton Distribution Functions (GPDs):
  a 3d picture of the proton
- Vector meson production: a window on the soft-hard transition



# Diffractive PDFs

# QCD factorization in hard diffraction

#### Diffractive DIS, like inclusive DIS, is factorisable:

[Collins (1998); Trentadue, Veneziano (1994); Berera, Soper (1996)...]

, universal partonic cross section

### $\sigma (\gamma^{*}p \rightarrow Xp) \approx f_{i/p}(z,Q^{2},x_{IP},t) \times \sigma_{\gamma^{*}q} (z,Q^{2})$

Diffractive Parton Distribution
 Function (DPDF)

 $f_{i/p}(z,Q^2,x_{IP},t)$  expresses the probability to find, with a probe of resolution  $Q^2$ , in a proton, parton i with momentum fraction z, under the condition that the proton remains intact, and emerges with small energy loss,  $x_{IP}$ , and momentum transfer, t - the DPDFs are a feature of the proton and evolve according to DGLAP

## **DPDFs** extraction



# QCD factorization in hard diffraction

#### Diffractive DIS, like inclusive DIS, is factorisable:

[Collins (1998); Trentadue, Veneziano (1994); Berera, Soper (1996)...]

, universal partonic cross section

### $\sigma (\gamma^{*}p \rightarrow Xp) \approx f_{i/p}(z,Q^{2},x_{IP},t) \times \sigma_{\gamma^{*}q} (z,Q^{2})$

Diffractive Parton Distribution
 Function (DPDF)

 $f_{i/p}(z,Q^2,x_{IP},t)$  expresses the probability to find, with a probe of resolution  $Q^2$ , in a proton, parton i with momentum fraction z, under the condition that the proton remains intact, and emerges with small energy loss,  $x_{IP}$ , and momentum transfer, t - the DPDFs are a feature of the proton and evolve according to DGLAP

# ■ Assumption → proton vertex factorisation: Regge-motivated IP flux $\sigma (\gamma^*p \rightarrow Xp) \approx f_{IP/p}(x_{IP},t) \times f_{i/IP}(z,Q^2) \times \sigma_{\gamma^*q}(z,Q^2)$

At large  $x_{IP}$ , a separately factorisable sub-leading exchange (IR), with different  $x_{IP}$  dependence and partonic composition

# Diffractive parton densities



### Room for improvement!

- Fits fail at low Q2 → additional corrections needed to DGLAP evolution
- Uncertanties (high z)
- Discrepancies between data sets
- Fitting without proton vertex factorization assumption

## Diffractive parton densities



### Room for improvement!

- Fit fail at low Q2 → additi evoluti
- Uncertanties (high z)
- Descrepancies between date
- Fitting without proton verte



**Figure 7.34:** NLO QCD predictions for the  $z_P^{\text{obs}}$ -dependence using three different sets of diffractive PDFs: H1 2006 Fit B (full black), Fit (dotted green), both from Ref. [276], and ZEUS 2009 Fit SJ (dashed blue curves) from Ref. [277]. The rescaling for the calculation using the ZEUS SJ fit is needed to take into account the contribution of proton dissociation, which has been included in the H1 fits and B.

# Factorization breaking

## Factorisation breaking at Tevatron





Understood in terms of (soft) rescattering among spectator partons [Kaidalov, Khoze, Martin, Ryskin] PRL 84 (2000) 5043

□ Lots of different theoretical approaches [Goulianos, Gotsman, Levin, Maor, Ingelman, Enberg, Cox, Forshaw, Lonnblad...]

□ Quantified by "rapidity gap survival probability", <|S|<sup>2</sup>>

## Rescattering effects at HERA?

 Diffractive dijet photoproduction: direct vs resolved events
 → switch photon remnant on/off:

$$X_{\gamma} = \frac{\sum_{jets} E - p_z}{\sum_{HES} E - p_z}$$



 $x_{\gamma} < 0.75$ 

Rescatter

### **Rescattering effects at HERA?** DIFF DIJET PHOTOPRODUCTION



Double ratio photoproduction/DIS - uncertainites reduced!

Dependence of the suppression on  $E_{T}$  of the leading jet and  $z_{\text{IP}}$  not observed!

 $\frac{(\text{DATA/NLO})_{\gamma p}}{(\text{DATA/NLO})_{\text{DIS}}} = 0.55 \pm 0.10 \,(\text{data}) \pm 0.02 \,(\text{theor.})$ 

### **Rescattering effects at HERA?** DIFF DIJET PHOTOPRODUCTION



Never-ending discussion on diffractive dijet production at HERA...is it photon issue or rather survival probability issue?

Needed measurement of gap survival probability



H1 VFPS data







# Not done

# $F_2^{b}$ , $F_2^{c}$ with proton tag

 $F_2^c$  measured with LRG (HERA I data)

Nice ingredients for a global fit



# QCD fit to leading baryon data

e  $q^{2}$   $q^{*}$   $r_{IP}$   $IP, IR, \pi$  p t

Leading proton and neutron spectra important for cosmic ray community

Yet another way to investigate the proton structure -- measure  $F_2^{LP}$ ,  $F_2^{LN}$  and extract corresponding PDFs

### QCD fits to leading neutron data $\rightarrow F_2^{\pi}$



Figure 19:  $F_2^{\pi}$  as a function of  $x_{\pi}$  for the pion in bins of  $Q^2$  determined for 0.64  $\langle x_{\perp} \langle 0.82 \rangle$ . The pion flux used to determine  $F_2^{\pi}$  is the flux obtained using the additive quark model (AQM) of Eq. (21). The uncertainty shown on  $F_2^{\pi,AQM}$  arises from the statistical uncertainty due to the leading neutron added in quadrature with the uncertainty on  $F_2$ . Not shown are the correlated systematic uncertainties given in Table 1. The solid curves are  $F_2^{\pi}$  from the GRV parameterisation [76] while the dotted curves are from the Sutton *et al.* parameterisation [77].

H1 and ZEUS HERA I results

 $F_2{}^{\pi}$  measured but never fitted

#### In principle can extract pion PDFs!

## Vector meson (VM) production



## VM production

Rich harvest documented by tens of papers Large W interval

Wide range of several scales ( $Q^2$ , t,  $M_{VM}$ )





b (GeV<sup>-2</sup>)

## Transition soft $\rightarrow$ hard

Soft - Regge



Hard - QCD M P P P

VM ( $J^{PC}=1^{--}$ ):  $\gamma$ ,  $\rho$ ,  $\phi$ ,  $J/\psi$ ,  $\Upsilon$ ,...

### With increasing scale ( $Q^2$ , $M_{VM}$ , †)

 $\sigma(W) \propto W^{\delta}$  = Expect  $\delta$  to increase from soft (~0.2, 'soft Pomeron' value) to hard (~0.8, reflecting large gluon density at low x)

Expect b to decrease from soft (~10 GeV<sup>-2</sup>) to hard (~4-5 GeV<sup>-2</sup>)

 $\frac{d\sigma}{dt} \propto e^{-b|t|}$ 

## Transition soft $\rightarrow$ hard

Soft - Regge



Hard - QCD M F P P Hard - QCD VM F P

VM ( $J^{PC}=1^{--}$ ):  $\gamma$ ,  $\rho$ ,  $\phi$ ,  $J/\psi$ ,  $\Upsilon$ ,...

### With increasing scale ( $Q^2$ , $M_{VM}$ , $\dagger$ )

$$\sigma(W) \propto W^{\circ}$$

 $\frac{d\sigma}{d\sigma} \propto e^{-b|t|}$ 

dt

- Expect δ to increase from soft (~0.2, 'soft Pomeron' value)
  to hard (~0.8, reflecting large gluon density at low x)
- Expect b to decrease from soft (~10 GeV<sup>-2</sup>) to hard (~4-5 GeV<sup>-2</sup>)



Transition soft  $\rightarrow$  hard: energy dependence

Here scale is  $M_{VM}$  - same observed when varying  $Q^2$  for a given VM

### Transition soft $\rightarrow$ hard

Soft - Regge



Hard - QCD M P P P Hard - QCD VM P P

VM ( $J^{PC}=1^{--}$ ):  $\gamma$ ,  $\rho$ ,  $\phi$ ,  $J/\psi$ ,  $\Upsilon$ ,...

### With increasing scale ( $Q^2$ , $M_{VM}$ , †)

 $\sigma(W) \propto W^{\circ}$ 

$$rac{d\sigma}{dt} \propto e^{-b|t|}$$

- Expect δ to increase from soft (~0.2, 'soft Pomeron' value)
  to hard (~0.8, reflecting large gluon density at low x)
- Expect b to decrease from soft (~10 GeV<sup>-2</sup>) to hard (~4-5 GeV<sup>-2</sup>)

## Transition soft $\rightarrow$ hard: t-slope dependence



As in optical diffraction, size of diffractive cone related to size of interacting objects

 $b \approx b_{VM} + b_{ps}$ 

For p.diss. proton breaks  $\rightarrow b_{p.diss.}$  smaller than  $b_{el.}$ 

## Inclusive and semi-inclusive opportunities at EIC

- Leading proton in a much wider range of t and xL
- t dependence of IR contribution csi > 0.1
- FLD promising (high luminosity variable cme)
- Unique opportunity to improve DPDF extraction at high z, Fig. 7.33

What about dijets? Lower average energy than at HERA