dRICh first very tentative porting of the geometry into ATHENA

28/June/2021 E. Cisbani (INFN/RM and ISS)

People involved (past and present):

M. Contalbrigo (INFN-FE), L. Barion (INFN-FE), A. Del Dotto (INFN-LNF), C. Dilks (Duke), C. Fanelli (JLab/MIT), M. Mirazita (INFN-LNF), A. Movsisyan (INFN-FE), R. Preghenella (INFN-BO), G.M. Urciuoli (INFN-RM), Z. Zhao (Duke/JLab), ... and those I forgot to mention

and the EIC-eRD14/PID Consortium

dRICh single sector baseline geometry

Main semi-quantitative features:

- aerogel transverse size ~ ½ mirror transverse size
- mirror and photon surfaces are largely transverse to the beam
- optimal photo sensor surface is curved (~sphere)

Simplistic considerations

- Decrease longitudinal size:
 - improve chromatic aberration
 - tend to improve final photon acceptance
 - reduce number of gas photons
- Decrease transverse size
 - need to rotate mirror (and sensor)
 - may degrade chromatic aberration
 - reduce gas path length at smaller angles
 - photon detector may interfere with large angles aerogel photons

Original JLEIC dRICh (single sector)

red dots: focal region (approx.)

yellow lines: photons at gas Cherenkov angles relative to charger particles direction from IP

One of the first attempt to fit dRICh into ATHENA current constraints (single sector)

red dots: focal region (approx.) yellow lines: photons at gas Cherenkov angles relative to charger particles direction from IP (they start after front vessel for coding simplicity)

Couple of quick comments

Very likely the dRICh vessel needs to expand in this space.

Front vessel reduces acceptance (respect to JLAIC); aerogel geometry can likely be adapted (tilted or staggered) to maintain adequate gas paths.