
"Athena DAQ Tutorial"

1. Components:

2. Responsibilities:

DAQ WG Detector WG Detector / DAQ DAQ WG SDCC / DAQ / Software WG

3. Functions

- a. Clock Distribution: distribute clock, synchronize detector timing with bunch structure, track bunch structure, share other information between detectors
- b. Front End Boards: readout digital data, zero-suppression / other data compression, multiplex channels, assemble time frames
- c. Front End Processors (if needed): more complex analysis, but continue function of Front End Boards
- d. DAQ computing / network: transport data, format data, configuration of detectors and runs, HLT, additional data compression, monitoring, logging, system control, track datafiles and configuration information
- e. Tape system: store data and make accessible for analysis

4. Interfaces

- a. CAD -> Clock Distribution: TBD
- b. Clock Distribution -> Detectors: Should define this ASAP. How many bits? Clock, BX, programmable deadtime, start run, event handling, spin information?
- c. Clock Distribution -> DAQ Computing?
- d. FEB / FEP -> DAQ computing:
 - 1. Physical level: useful to specify fabric / fabrics?
 - 2. Logical level: do we specify details of time frames?, synchronize time frames?, do we need to specify protocols at this stage?
 - 3. Configuration protocols
 - 4. Slow controls?
- e. DAQ computing -> software
 - 1. Data file structure:
 - Events?
 - Combine same time regions for all detectors in specific files?
 - Time regions in multiple files split by detector?
 - 2. Shared Databases

- f. DAQ computing -> software
 - 1. Data file structure:
 - Events?
 - Combine same time regions for all detectors in specific files?
 - Time regions in multiple files split by detector?
 - 2. Shared Databases
- 5. Other related components?
 - a. Scalers
 - b. Slow Controls
 - c. Beam parameters for analysis <-> feedback to collider from detectors