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The Electron Ion Collider 

Luminosity
1033-1034 cm-2s-1

80% polarized 
electrons 5-18 GeV

● Beams of electrons and high-energy protons or heavier atomic nuclei 

● Wide coverage of CoM energy √se-p ~ (20-140) GeV

● Two large acceptance detectors 

Will be constructed over ten years at an estimated 
cost between $1.6 and $2.6 billion

 A machine or delvin  deeper than ever 
be ore into the buildin  blocks o  matter
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 R. Ent, Overview of the EIC Program

80% polarized 
p to Uranium 
41 GeV, 100 to 275 GeV

http://www.jlab.org/user_resources/meetings/JLUO_21/Ent.pptx


Example of EIC Central Detector
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 R. Ent, Overview of the EIC Program

3D visualization with Sketchup

Based on new 3T Magnet

ECCE/1.5T

http://www.jlab.org/user_resources/meetings/JLUO_21/Ent.pptx
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EIC and Timeline - How AI come into play?
See talk R. Ent, Overview of the EIC Program● AI basically present in all 

phases of the EIC schedule

● The EIC R&D program can be 
one of the first to 
systematically leverage on AI 
during the detector design 
phase 

● AI can advance research, 
design, and operation of the 
EIC. In the Yellow Report, Sec. 
11.12 (Artificial Intelligence for 
the EIC detector), we 
individuate specific aspects 
that can be potentially tackled 
with AI.   

● Supported by new approaches 
like Streaming RO, the EIC 
can become one of the first 
largely automated experiments 
(e.g., calibration)

http://www.jlab.org/user_resources/meetings/JLUO_21/Ent.pptx
https://arxiv.org/pdf/2103.05419.pdf
https://arxiv.org/pdf/2103.05419.pdf
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Artificial Intelligence for the EIC Detector 

Partial list selected from the YR: 

● Streaming Readout can further the convergence of online 
and offline analysis allowing for the incorporation of high 
level AI algorithms in the analysis pipeline: better data 
quality and shorter analysis cycle   

From the EIC Yellow Report

● Reconstruction algorithms (e.g., tracking) 

● Particle Identification/architecture for specific detectors (e.g., imaging Cherenkov)

● Event classification / Global PID    

● Search for rare signatures (e.g., GlueX BDT) 

● Architectures for specific physics: utilization of Jets (e.g., ML4Jets) 

● Fast simulations  

● Design

https://arxiv.org/pdf/2103.05419.pdf
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Detector Design with AI
ECCE detector concept
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Detector Design with AI 
● Designing detectors “with” AI is a new area of research at its infancy that can have a tremendous impact 

across many fields (NP, HEP, Astro-Phys).  See lectures https://github.com/cfteach/AI4NP_detector_opt  
given at the AI4NP winter school https://indico.jlab.org/event/409/. 

● It includes a broad range of approaches, from “optimizing” an existing expert-drawn baseline detector 
concept, to in principle letting AI design completely “new” and unseen configurations. 

● New field, not many examples... Many applications in other fields in recent years, e.g., industrial material, 
molecular and drug design [1, 2].

● AI-driven design is not limited to “interfacing” AI with existing advanced simulation platforms used in our 
community (Geant). It also (and principally) entails establishing a procedural body of instructions to encode 
efficiently the optimal design requirements and validate the results in a self-consistent way [3]. 

● As far as optimization is concerned, the choice of a suitable algorithm is a challenge itself (no free lunch 
theorem [4]) and the full potential of certain algorithms always requires some degree of customization. First 
thing to do is to study and characterize the properties of the problem. 

[1] A. Mosavi, T. Rabczuk, and A. R. Varkonyi-Koczy, “Reviewing the novel machine learning tools for materials design,” in Int. Conference on Global Research and 
Education, pp. 50–58, Springer, 2017
[2] Z. Zhou, S. Kearnes, L. Li, R. N. Zare, and P. Riley, “Optimization of molecules via deep reinforcement learning,” Scientific Reports, vol. 9, no. 1, pp. 1–10, 2019
[3] CF et al. "AI-optimized detector design for the future Electron-Ion Collider: the dual-radiator RICH case." JINST 15.05 (2020): P05009. 
[4] Wolpert, D.H., Macready, W.G., 1997. No free lunch theorems for optimization. Trans. Evol. Comp 1, 67–82

https://github.com/cfteach/AI4NP_detector_opt
https://indico.jlab.org/event/409/


8

How do we design and optimize detectors?
● Typically full detector design is studied once the subsystem prototypes are ready.

● In the subsystem design phase constraints from the full detector or outer layers are taken into 
consideration. 

● Actually many parameters (mechanics, geometry, optics) characterize the design of each 
sub-detector, hence the full design represents a large combinatorial problem. A well known 
phenomenon observed in optimization problems with high-dimensional spaces is the 
so-called “curse of dimensionality'” [1], introduced for the first time by Bellman when 
considering problems in dynamic programming. 

● In addition to that, more objective functions often need to be considered at the same time in 
the design of each sub-detector (e.g., resolution, efficiency, cost, distinguishing power, etc). 

● In this context, AI offers SOTA solutions to solve complex optimization problems in an efficient 
way.  

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.
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“Taking the Human out of the Loop”…? 
B. Shahriari, et al. Proceedings of the IEEE 104.1 (2015): 148-175.

AI for Detector Design 

Intelligent DetectorsHuman-assisted
(experts knowled e)

     Autonomous

● Optimal Design 
● Inverse Design 
● Self-Design 
● Calibration/ 

Alignment 
● Self-Calibration
● etc. 

Accelerated 
Discovery

DL-enhanced 

Bayesian 
Optimization

Meta-learninEvolutionary autoML
Rein orcement Learnin

Multi-objective 



10

Detector 
optimization 

workflow

Detector 
Simulation 

Analysis of 
High-level 

reconstruction of 
events

Injection of 
Physics 
Events 

AI
Model based on 

observations, 
decision making

Design parameters
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Why AI at this phase?
● Optimization does not mean necessarily 

“fine-tuning”. In a complex problem with 
multiple design criteria (e.g., performance, cost, 
material) it helps identifying/approximate the 
best set of trade-off solutions (Pareto frontier) 
and decisions can be made based on that. 

● We want to use these algorithms to: (1) 
steer the design and suggest 
combinations of parameters that a 
“manual”/brute-force optimization will 
likely miss to identify; (2) further optimize 
some particular detector technology (see 
d-RICH paper, e.g., optics properties)

● All “steps” (physics, detector) involved in 
the AI optimization, strong interplay 
between ECCE working groups  

Interaction amon  ECCE Workin  Groups

Detector 
Optimization

Workflow

DWG’s:
● Technology Selection 
● Baseline Design 
● Alternate Configuration(s)

PWG’s:
● Physics Signal Selection 
● Physics Performance 

Evaluation

CWG’s:
● Simulation Campaign 

Support 
● AI Optimization 

https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
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AI within ECCE  
https://www.ecce-eic.org

ECCE shares the vision of the 
NP community that the EIC 
science mission is best 
served by two complementary 
detectors, and is investigating 
a design based on a 1.5T 
solenoid in both EIC 
interaction regions. 

ECCE recognizes the 
important role that AI can play 
in a future experiment like 
EIC, and includes in its 
structure a working group 
dedicated to AI (March 2021)
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AI WG Activities 

● Keeping in mind the “inner 
to outer” design process / 
strategy from T. Horn’s talk 
at the 5th ECCE IB:

● Identified activities in the AI Working Group (regarding design and reconstruction 
algorithms): 

○ Tracking  (Brunel, MIT, Regina, work in progress)

○ PID  --- DIRC (CNU, MIT), d-RICH (MIT d-RICH paper)

○ Calorimetry (CUA, MIT, Regina, work started within eRD1, link to presentation) 

○ (Far Forward --- ZDC (Duquense))

https://indico.bnl.gov/event/11516/contributions/48795/attachments/34715/56379/ECCE-IB-Meeting-05242021.pdf
https://indico.bnl.gov/event/11516/contributions/48795/attachments/34715/56379/ECCE-IB-Meeting-05242021.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
https://wiki.jlab.org/cuawiki/images/f/ff/EEEmCal_AI_Fanelli.pdf)


14

Bayesian Optimization
● BO is a sequential strategy 

developed for global 
optimization.

● After gathering evaluations 
we builds a posterior 
distribution used to 
construct an acquisition 
function.
 

● This cheap function 
determines what is next 
query point.

1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.
3. Update the Data and, in turn, the Surrogate Function.
4. Go To 1.

t(n) t(n+1)

http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/

http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/


no

15

t

-L
og

     ji k...

    N  cores

m
ul

tit
hr

ea
de

d

se
tti

ng
s 

x

    N  detectors 

SI
M

U
LA

TI
O

N
(p

hy
si

cs
+d

et
ec

to
r)

A
N

A
LY

SE
R

(r
ec

on
st

ru
ct

io
n)

FO
M

  i

FO
M

  j

FO
M

  j

updated  model

control convergence

monitoring

yes

B
O

 W
R

A
PP

ER

EARLY STOPPING

OPTIMIZATION+ML/DL/RL
tell {x},y

ask {x}

check

STARTING

CONFIGURATION

  {x}

se
tti

ng
s 

x

se
tti

ng
s 

x



16

EARLY STOPPING

AI-Optimized dRICH

curves shown as 68% CL bands 

E. Cisbani, A. Del Dotto, CF*, M. Williams et al.  
JINST 15.05 (2020): P05009.

● Statistically significant Improvement in both parts.
● In particular in the gas region where the 5σ threshold shifted 

from 43 to 50 GeV/c and the 3σ one extended up to 
● Notice that before this study we did not know “how well” the 

legacy design was performing.
aerogel (4 cm, n(400 nm): 1.02) 
+ 3 mm acrylic filter 
+ gas (1.6 m, n(C2F6): 1.0008)
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Multiple Objectives
● The problem becomes challenging when the objectives are of conflict to 

each other, that is, the optimal solution of an objective function is 
different from that of the other. For example improving the resolution of a 
detector could imply increasing the costs for its realization. 

● In solving such problems, with or without constraints, they give rise to a 
trade-off optimal solutions, popularly known as Pareto-optimal solutions.  V. Pareto, 

1848-1923

● Due to the multiplicity in solutions, these problems were 
proposed to be solved suitably using evolutionary 
algorithms which use a population approach in its 
search procedure.

● Starting with parameterized procedures in early nineties, 
the so-called evolutionary multi-objective optimization 
(EMO) algorithms is now an established field of 
research.

2

1

 Point C is not on the Pareto frontier because it 
is dominated by both point A and point B. 

MO-based solutions are helping to reveal important hidden knowledge 
about a problem – a matter which is difficult to achieve otherwise [1]. 

[1] Deb, Kalyanmoy. "Multi-objective optimisation using evolutionary 
algorithms: an introduction." Multi-objective evolutionary 
optimisation for product design and manufacturing. Springer, 
London, 2011. 3-34.

https://en.wikipedia.org/wiki/Vilfredo_Pareto
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Frameworks 
● Notice that MOO with dynamic/evolutionary 

algorithms (see, e.g., [1-3]) are probably the 
most utilized approaches on github, followed 
by more recent developments on 
multi-objective bayesian optimization (see, 
e.g., [4-7]). Using them has the advantage of 
having an entire community developing 
those tools. 

● Agent-based approaches to MOO are also 
possible (see, e.g., [8]), but won’t be 
discussed here. 

● Remarkably these approaches can 
accommodate mechanical and geometrical 
constraints during the optimization process.

https://github.com/topics/multi-objective-optimization

[1] J. J. Durillo and A. J. Nebro, “jMetal: A Java framework for multi-objective optimization,” 
Advances in Engineering Software, vol. 42, no. 10, pp. 760–771, 2011.

[2] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and C. Gagné, “DEAP: 
Evolutionary algorithms made easy,” The Journal of Machine Learning Research, vol. 13, 
no. 1, pp. 2171–2175, 2012. 

[3] J. Blank and K. Deb, “pymoo: Multi-objective Optimization in Python,” IEEE Access, 
vol. 8, pp. 89497–89509, 2020

[4] M. Laumanns and J. Ocenasek, “Bayesian optimization algorithms for multi-objective 
optimization,” in International Conference on Parallel Problem Solving from Nature, pp. 
298–307, Springer, 2002.

[5] M.  Balandat,  B.  Karrer,  D.  R.  Jiang,  S.  Daulton,  B.  Letham,  A.  G.  Wilson,  and 
E. Bakshy, “Botorch: Programmable bayesian optimization in pytorch,” arXiv preprint 
arXiv:1910.06403, 2019.

[6] P. P. Galuzio, E. H. de Vasconcelos Segundo, L. dos Santos Coelho, and V. C. Mariani, 
“MOBOpt—multi-objective Bayesian optimization,” SoftwareX, vol. 12, p. 100520, 2020.

[7] A. Mathern, O. S. Steinholtz, A. Sjöberg, M. Önnheim, K. Ek, R. Rempling, E. 
Gustavsson, and M. Jirstrand, “Multi-objective constrained Bayesian optimization for 
structural design,” Structural and Multidisciplinary Optimization, pp. 1–13, 2020.

[8] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for multi-objective 
reinforcement learning and policy adaptation,” in Advances in Neural Information 
Processing Systems, pp. 14636–14647, 2019



19

Elitist Non-Dominated 
Sorting Genetic 

Population
@(t)

Offspring
Population

@(t+1)

Front

Offspring

Population

[1] Deb, K., et al. "A fast and elitist multiobjective 
genetic algorithm" IEEE transactions on 
evolutionary computation 6.2 (2002): 182-197. 

This is one of the most popular approach 
(>35k citations on google scholar), characterized by:

● Use of an elitist principle
● Explicit diversity preserving mechanism
● Emphasis in non-dominated solutions

The population Rt is classified in non-dominated fronts. 
Not all fronts can be accommodated in the N slots of available in the new 
population Pt+1. We use crowding distance to keep those points in the last 

front that contribute to the highest diversity. 

The crowding distance di of point 
i is a measure of the objective 

space around i which is not 
occupied by any other solution in 

the population. 

i

f1

f2

i+1

i-1

crossover

mutation
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Workflow 

Step 1: Find multiple 
non-dominated points as close 
to the Pareto-optimal front 
as possible, with a wide 
trade-off among objectives.

Step 2 Choose one of the 
obtained points using 
higher-level information.

N.b.: This scheme is particularly useful 
also for single-objective optimization 
when multiple global optima are present

[1] K. Deb, Multi-objective evolutionary optimisation for product 
design and manufacturing. Springer, London, 2011. 3-34.
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Baseline (see talk of R. Cruz-Torres,
 Studies of EIC Tracking Needs)

Ratios are with respect the LBNL all Si baseline

11 parameters 
4 objectives 
Population size 100 
Offspring distributed over 30 cores

Each proposed design is 
consistent with baseline Aluminum 
support shell 
(not displayed) 

● Extended the design criteria to 
include simultaneously Kalman 
filter efficiency, pointing resolution, 
along with momentum and angular 
resolutions.  

● Mechanical constraints CF & Karthik Suresh (Regina) 

The ECCE Inner Tracker 

This is an unprecedented attempt in 
detector design for complexity 

https://www.jlab.org/sites/default/files/user-liaison/jluo2021/210623_JLab_Users_Meeting%20_upload.pdf
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Inner Tracker 
● The decision making process on the design can 

happen after the optimization, exploring the 
performance of the trade-off solutions.   

● On left are displayed momentum, angular resolutions) 
for one solution. Below the Kalman Filter inefficiency.  

● Performance not included as objectives can be used 
for validation. For example, pattern recognition and 
fake tracks rejection studies eventually studied to 
validate designs. 

For each design solution in the front one can study the 
corresponding detector performance. 

PRELIMINARY
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EIC Electron Endcap EMCal 
● We can use Multi-objective Optimization to optimize glass/crystal material selection in shared 

rapidity regions including mechanical constraints.  

● Like in the Hall B project, we can explore implementation of AI for clustering/reconstruction.  

The team: V. Berdnikov, M. Bondi’, CF, Y. Furletova, 
T. Horn, I. Larin, D. Romanov, R. Trotta

EIC Electron Endcap require an inner part (crystal) with high 
resolution and an outer part (glass) with less stringent 
requirements

Crystals have been used in homogeneous calorimeters but their 
production is slow and expensive.

As an alternative Scintilex develops SciGlass that is much simpler 
and less expensive to produce and thus offers great potential for 
both cost reduction and wider application if competitive 
performance parameters can be achieved.

Goal: maintain the resolution needed by the physics processes while 
reducing the number of crystals/cost, taking into account constraints.
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Novel aerogel material  The team: V. Berdnikov, 
J. Crafts, E. Cisbani, CF, 

T. Horn, R. Trotta

● Aerogels with low refractive indices are very 
fragile - tiles break during production and 
handling, and their installation in detectors.

● To improve the mechanical strength of aerogels, 
Scintilex is introducing fibers into the aerogel that 
increase mechanical strength, but do not affect 
the optical properties. 

● We are designing the aerogel+fibers optimizing 
mechanical stability and resolution. 

● Paper in preparation. 
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AI4EIC 
● Strategic moment to discuss how to fully take 

advantage of the new opportunities offered by AI to 
advance research, design, and operation of EIC.

● Growing convergence of AI, Data, and HPC provides a 
once in a generation opportunity to profoundly 
accelerate scientific discovery, create synergies across 
scientific areas.

● The interest of the community evidenced by the number 
of contributions and attendance of workshops dedicated 
to AI in Nuclear Physics, e.g. the [1, 2, 3], 

● The AI4EIC workshop will bring together the 
communities directly using AI technologies and provide 
a venue for discussion and identifying the specific 
needs and priorities for EIC.

● This will be a series of workshops. The first one will 
have a focus on experimental applications, therefore 
AI4EIC-exp

Sep 2021, CFNS - BNL

[1] B. Bedaque, et al., Report from the AI For Nuclear Physics Workshop, arXiv:2006.05422, 2020
[2] Joint Machine Learning Workshop, GlueX Panda EIC, 2020 
[3] AI4NP Winter School, https://indico.jlab.org/event/409/, 2021

Experimental Design,
Simulations, 
Reconstruction / Analysis, 
Control of Experimental 
Systems, 
Detector Readout,
Computing Frontiers

Organizing committee: J. Bernauer, A. Boehnlein, C.F., T. Horn

https://indico.bnl.gov/event/10699/

https://indico.gsi.de/event/9244/
https://indico.jlab.org/event/409/
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Summary
● AI is becoming ubiquitous in NP, and remarkable accomplishments have been recently 

obtained.

● AI will likely play a major role in multiple aspects of the Electron Ion Collider experiment. 
We will have a dedicated workshop on AI4EIC on September 7-10 2021.

● AI is at present already contributing to the EIC design.

● In NP we started exploring AI for optimal design in multidimensional space with single 
objectives. Most of the problems are multi-objectives though. None ever accomplished a 
multi-dimensional / multi-objective optimization of the performance of detectors when 
operating together. This is a high-dimensional combinatorial problem (with many 
parameters) that can be solved with AI. 

● Likely future detectors will be designed with the help of AI achieving optimal performance 
and cost reduction. One of the conclusions from the DOE Town Halls on AI for Science on 2019 
was that “AI techniques that can optimize the design of complex, large-scale experiments have 
the potential to revolutionize the way experimental nuclear physics is currently done”.


