AI/ML in Wire-Cell

Haiwang Yu (BNL) for the Wire-Cell Team BNL Physics fourth joint meeting on AI/ML 23 July 2021

Liquid Argon TPC

LArTPC is a key detector technology for many next-gen neutrino experiments

• calorimetry + rich and precise topology info.

LArTPC Signal Formation by B. Yu (BNL)

time

Wire-Cell reconstruction for LArTPC

DNN ROI finding to improve LArTPC Signal Processing

"Prolonged Track" – weak signal • Inefficiency [%] 'Tear Drop" - distorted waveform -20 JINST 13 P07006 (2018) Noisy dots - noise ٠ -40 -60 il the line had we the plane is a construction of the plan and the standard and the second standard and the second standards a weak $\begin{array}{c} 1(2) & 3(6) & 5(10)^{10}(19)^{0}(36)^{0}(49)^{5}(63)^{0}(74)^{5}(82)^{0}(85)^{2}(86)^{4}(87)^{9}(89.5) \\ \theta_{xz} & (\theta_{x'z'}) \ [degree] \end{array}$ $O_{(0)}$ unipolar 6000 6000 After SP Raw 5000 5000 tick 4000 4000 tick SP 3000 3000 2000 2000 1000 1000 0 800 1500 1500 900 1200 1300 1400 1300 1400 channel 900 1200 1000 1100 channel 1000 1100

DNN ROI finding with multi-plane information

JINST 16 (2021) 01, P01036

DNN ROI finding with multiple input channel input: waveform frame output: tagged ROI

DNN ROI finding with multi-plane information

Vertex finding as regressional segmentation with U-Net

Current strategy: vertex finding as regressional segmentation with UNet

- U-Net: efficiently use geometry info which is critical
- regressional loss on distance based "confidence map" to use a region of points instead of only one (next slide)

OpenPose: https://arxiv.org/pdf/1812.08008.pdf

DL-Vertexing: network structure and data preparation

Used SparseConvNet to realized 3D sparse conv. DNN https://github.com/facebookresearch/SparseConvNet This work: <u>https://github.com/HaiwangYu/nue-cc</u>

DL-Vertexing: initial results on MicroBooNE ve-cc

Current best model evaluated on ν e-cc test samples:

- with **1cm cut**: Trad 50.1% DNN 67.6% Hybrid 65.2%
- relative 30% improvement compared with traditional Wire-Cell vertexing

Neutrino Energy Estimator (EE) could be improved

Current Wire-Cell EE: (Calorimetric) Reco neutrino energy = kinetic energy of leptons and hadrons + muon/pion masses + binding energy (8.6 MeV) associated with each visible proton

- straightforward, decent performance
- could be improved by utilizing the underlying correlation between event topology and reco-truth bias
 - better LEE sensitivity
 - smaller systematic err. for unfolding xsec analysis.

RNN Energy Estimator: variable length list of particles → energy

D. Torbunov Outputs Inputs Lepton Particles Energy LSTM (128) (32).... PN Norm Merge atch Norn Event Neutrino Energy

RNN EE

- Extracts information from each particle
- Aggregates it with a help of an LSTM neural network
- Then combines aggregated information with event level variables and predicts energy of neutrino and energy of the primary lepton.

Initial results on MicroBooNE

D. Torbunov

New RNN EE improved the neutrino energy reconstruction with first try:

- resolution: $24\% \rightarrow 14\%$
- bias: $-12\% \rightarrow 0.6\%$

Hadronic energy reco: traditional vs. RNN-EE

Neutrino energy reco: traditional vs. RNN-EE

Boosted Decision Trees (BDT) for neutrino event selection

xgboost-algorithm-long-she-may-rein-edd9f99be63d

BDT for neutrino event selection

Large Scale Scientific Simulation Systematics GAN (LS4GAN)

Collaborating with BNL CSI

deconvoluted waveform with loose low frequency filter LS4GAN: To precisely handle of systematic differences between simulation and reality using GANs

- to augment simulation
- to help understanding of sim-data difference
- https://ls4gan.github.io/

Main idea: Domain translation without paired data, e.g. CycleGAN

LArTPC simulation acceleration with portable solutions

Computing time breakdown for the DNN ROI finding task

Wire-Cell 2D Conv. Simulation Kokkos Porting (unfinished) Speedup

- <u>H. Yu, Wire-Cell PPS talk at vCHEP21</u>
- Intel i9-9900K, NVIDIA RTX 2080Ti

Inferencing with ZIO

B. Viren

Brett: ZIO design discussion

https://brettviren.github.io/zio/whytos.html

ZIO: ZeroMQ based distributed computing system developed by Brett

ZIO could be used to build neutral network inferencing services

Summary

Wire-Cell is a project targeting LArTPC and beyond

- Wire-Cell Toolkit data flow programing framework
- ZIO distributed computing framework
- LS4GAN project
- ...

Improving LArTPC reconstruction takes both human learning and machine learning

- learn hardware features; explore most efficient reco. algorithms
- some issues suit AI/ML better
 - more complicated correlations
 - cover phase space faster

AI/ML

- + domain knowledge \rightarrow efficient
- + validation \rightarrow reliable

https://lar.bnl.gov/ml/