

Software & Computing Meeting Thursday 2021-07-01

The Software and Computing WG Conveners: Andrea Bressan (University of Trieste and INFN), Dmitry Romanov (Jefferson lab), Sylvester Joosten (Argonne National Laboratory), Whitney Armstrong (Argonne National Laboratory), Wouter Deconinck (The University of Manitoba)

Simulation status (and "baseline" geometry implementation)

Calorimetry WG

Realistic HCAL Hybrid electron endcap calorimeter with crystal

- Ready to study impact of magnet on HCAL:
 - Realistic HCAL geometry
 - V Solenoid material
 - \mathbf{X} Helmholtz option to be added soon
 - W HCAL clustering and energy calibration
- ECAL system well-developed:
 - Barrel ECAL:
 - Marrel SiW imaging calorimeter
 - Barrel hybrid SiW + WSciFi calorimeter
 - Electron-endcap ECAL:
 - Crystal calorimeter
 - Glass calorimeter
 - Need decision from WG on "baseline"
 - Ion-endcap ECAL
 - 🛛 🚧 Shashlik calorimeter
 - Reconstruction (2D, 2+1D and 3D clustering)
- Geometry:

Ο

 Image: Finalize geometry for "baseline" setup with longer barrel/smaller negative endcap ECAL

Calorimetry delegate: Vladimir Berndnikov S&C WG contacts: Wouter Deconinck & Sylvester Joosten

Far-forward & Far-backward WGs

- FF being worked on by Alex Jentsch
 - Magnets and detectors being updated to latest design
 - Will add realistic beam-pipe model
 - FΒ

Ο

X Need to work with WG to add geometries

FF delegate: Alex Jentsch FB delegate: TBD S&C WG contact: Whitney Armstrong

PID WG

- dRICH (Christopher Dilks, Chao Peng)
 - V functioning fuzzy-K ring-clustering
 - *m* geometry being adjusted by Christopher
 - ✓ have field maps for both magnet setups
- mRICH (Murad Sarsour, Whitney Armstrong)
 - received baseline realistic geometry (implemented in fun4All) from Murad
 - implement realistic detector in DD4hep (80% complete)
- DIRC (Grzegorz Kalicy, Dmitry Romanov)
 - **V** simplified geometry
 - *m* implement realistic detector in DD4hep
- TOF (Zhenyu Ye)
 - LGAD implementation with realistic services

gas-RICH starting point for dRICH implementation

LGAD implementation ongoing (Zhenyu)

mRICH geometry

changing quickly

DIRC needs the

most work

PID delegate: Zhenyu Ye S&C WG contact: Dmitry Romanov

5

Tracking WG

Outer LGAD layer not part of the "0-0-0" setup

Barrel staves as in ITS2 TDR

🚧 silicon tracker

🚧 Material validation (Shujie Li)

- Vertex layers to be changed to cylindrical geometry
- **barrel MPGD**
- V GEM

Ο

0

- Reconstruction:
 - geometries fully functional with ACTS
 - w updating algorithms for ACTS v8.3 (tracking benchmarks ongoing)

Disks are wedges with sensitive layer and average material backing. Needs better constraints from WG

6

Physics WGs

- **V** Generic (unvalidated) afterburner
- X Update afterburner based on the presentation by Brian Page last meeting
- Collect physics analysis portfolio

DAQ WG

• X Assign SWG contact for DAQ WG

Exclusive & Tagging delegate: TBD S&C WG contact: Sylvester Joosten & Whitney Armstrong

Inclusive delegate: TBD S&C WG contact: TBD

Jets, HF & EW-BSM delegate: Brian Page S&C WG contact: Wouter Deconinck

SIDIS delegate: Christopher Dilks S&C WG contact: TBD

DAQ delegate: TBD S&C WG contact: Andrea Bressan (**tentatively**)

Jets, HF & EW-BSM

- Generator benchmarks
 - Pythia8 DIS CC and NC
 Samples ran through entire chain, from G4 to digi/reco, clustering.
 - Efficient filter for events
- Detector benchmarks
 - Calorimetry resolutions under study
 - X HCAL sensitivity
- Reconstruction benchmarks
 - CAL clustering
 - **IV** HCAL clustering
 - V Jet reconstruction (calorimetric)
 - X Energy flow (requires tracking)

8

Reconstruction Status and Examples of *using* DD4hep for Physics Benchmark Studies

With thanks to Chao Peng, Miguel Arratia and Stephen Sekula

Calorimetry Clustering fully functional

50 GeV pions in forward HCAL:

Pythia8 DIS events:

Electron-pion separation With HCAL

Impact of magnet on barrel HCAL

Jet reconstruction

With forward calorimeter system

Quick Instructions on Accessing S3

Accessing Large Data Productions: From the Web

https://dtn01.sdcc.bnl.gov:9000/minio/login

eictest / Used: 31. Q Search Name	eictest / ATHENA / Used: 31.66 GB Q Search Objects	eictest / ATHENA / Used: 31.66 GB Q Search Objects	eictest / ATHENA / Used: 31.66 GB Q Search Objects	eictest / ATHENA / Used: 31.66 GB Q Search Objects	eictest / ATHENA / RECO / SINGLE / neutron / 2021-06-17 / 🕒 Used: 31.66 GB Q Search Objects
TA 🖸	Hume	Name	Name	Name	Name
» C	EVGEN/	JETS/	neutron/	2021-06-17/	D neutron_10GeV_45to135deg.0001.full_cal_clustering.root
E EC	RECO/	SINGLE/	D pi+/		
Te					

Accessing Large Data Productions: Command Line

Download the Minio client:

wget <u>https://dl.min.io/client/mc/release/linux-amd64/mc</u>

Register your S3 instance:

./mc config host add S3 https://dtn01.sdcc.bnl.gov:9000 \$u \$p Copy files (recursively):

./mc cp -r <u>S3/eictest/ATHENA/RECO/SINGLE/neutron/2021-06-17</u> .

Full docs: http://doc.athena-eic.org/en/latest/howto/s3_file_storage.html

Direct Access to Files on S3 or XRootD

- Direct access: TFile* file =
 - TFile::Open("s3https://dtn01.sdcc.bnl.gov:9000/eictest/ATHENA/ RECO/JETS/crossDivNrgCrab/DIS_NC_Q2gt10_crossDivNrgCrab_25mRad _18x275_v1.0001.root","AUTH=eicS3read:eicS3read") or use export S3_ACCESS_KEY=eicS3read S3_SECRET_KEY=eicS3read
- Using xrootd on the copy mirrored at JLab: TFile* file = TFile::Open("root://sci-xrootd.jlab.org//osgpool/eic/ATHENA/RE CO/JETS/crossDivNrgCrab/DIS_NC_Q2gt10_crossDivNrgCrab_25mRad_1 8x275_v1.0001.root") (no authentication needed; public access)

This avoids the need for large data transfers.

Computing Update

Large scale data productions

- Input: HepMC files preferred (pip install mcconv for other formats)
- Full simulation with current detector model, all bells and whistles:
 - Typical: 0.25 to 3.0 s/event, <500MB RAM RSS, 30 kB to 750 kB output size/event
 - Slightly decreasing performance as geometry features are added
 - Full ROOT files on S3 under <u>ATHENA/FULL/</u>
- Reconstruction
 - Focus on full calorimetry clustering (Ecal and Hcal), tracking will be added next
 - Reco ROOT files on S3 under <u>ATHENA/RECO/</u>
- Full simulation: ~weekly repetition; reconstruction: every few days
- Written to work on any slurm batch system; performed at Compute Canada
 - Currently also working on trial runs on OSG at the ~2k job scale for single particle events)

Overview of Available Productions

- JETS: {5x41, 18x275} ⊗ {CC, NC} ⊗ {Q2 > 10, 100, 1000 GeV} (1M each)
- EXCLUSIVE:
 - eslight rho test production in progress
 - pi-neutron, K-Lambda, K-Sigma in progress
- SINGLES
 - {3 to 50 deg, 45 to 135 deg, 130 to 177 deg} ⊗ {e-, pi+, kaon0L, neutron, gamma} ⊗ {1, 2, 5, 10, 20, 50 GeV} (1M each)

Dashboards in progress...

Software & Computing WG

Software & Computing Conveners:

Whitney Armstrong, Andrea Bressan(*), Wouter Deconinck, Sylvester Joosten, Dmitry Romanov (*)- liaison to EICUG software group

Day 0 WG support:

Kolja Kauder, Miguel Arratia, Stephen Sekula, Dmitry Romanov, Yulia Furletova, Andrea Bressan

Full simulation/reconstruction team

Whitney Armstrong, Miguel Arratia, Wouter Deconinck, Sylvester Joosten, Jihee Kim, Chao Peng, Tomas Polakovic, Dmitry Romanov, Marshall Scott, Zhenyu Ye, Ziyue Zhang, Maria Żurek

...and a rapidly growing amount ATHENA collaborators!

Documentation portal: doc.athena-eic.org

Full simulation tutorials

eic-ip6-software-l@lists.bnl.gov #software-helpdesk on Slack Bi-weekly software meeting: Thursday 12:00pm EDT

ATHENA central detector