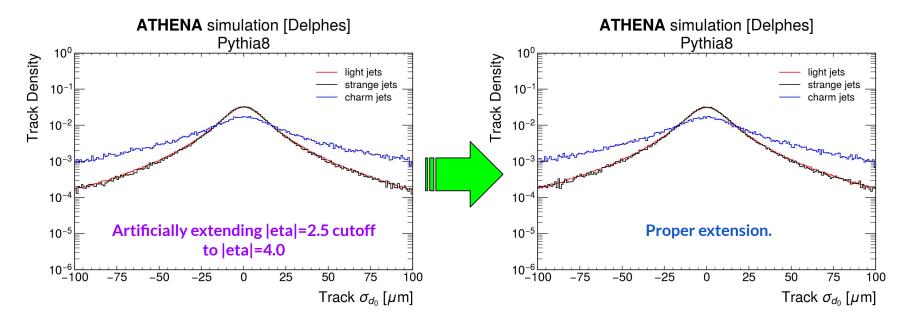
Virtual Reality visuals by Sean Preins

Charm Jet Tagging in ATHENA

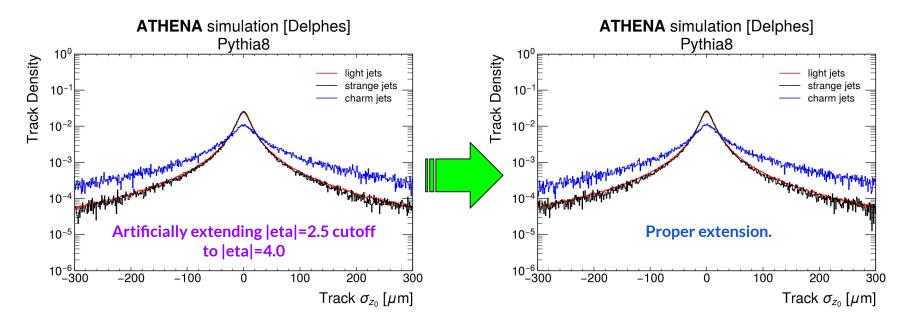
Displaced Tracks in Jets - Fast Simulation with Updated d_0/z_0 and Beam Models Calorimeter-Only Jets in Full vs. Fast Simulation

Justine Choi (HPHS/SMU), Stephanie Gilchrist (SMU), Stephen Sekula (SMU) Presented at the ATHENA Jets/Heavy Flavor/EW/BSM WG Meeting - July 6, 2021

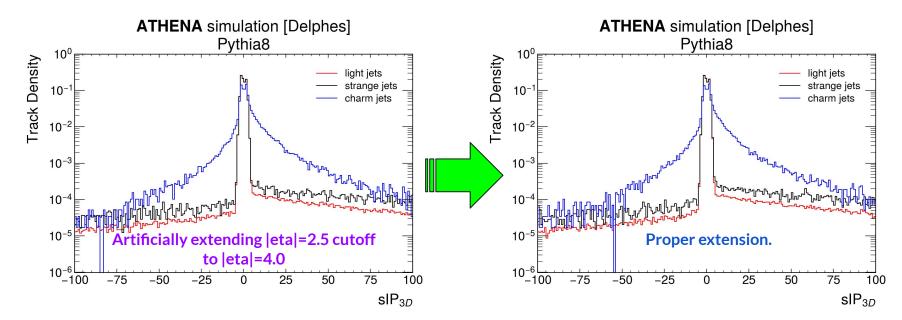

Displaced Tracks in Delphes

- Implementation of full all-silicon d_0/z_0 resolution model
- Implementation of EIC beam model
 - Implications for simplistic displaced track tagging
 - Multivariate displaced track tagging
 - Next steps

<u>Note</u>: all jets used in this section of the talk are R=1 anti- k_T jets with energy flow, a minimum p_T of 5 GeV/c, and $|\eta| < 3.0$ (fast simulation calorimeter extends only to $|\eta| = 3.5$)

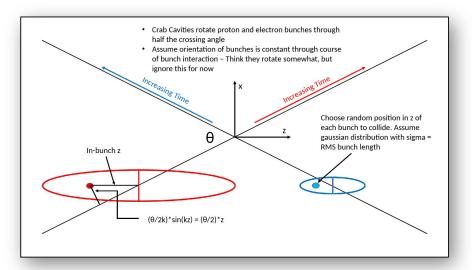

Thanks to Rey Cruz-Torres: Extended d_o/z_o Model!

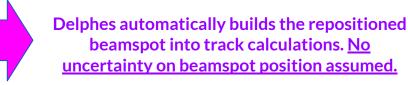
On June 29, Rey provided all-silicon d_0/z_0 resolution numbers to |eta|=4.0. Implemented in delphes_EIC.


Thanks to Rey Cruz-Torres: Extended d_o/z_o Model!

On June 29, Rey provided all-silicon $d_0/z0$ resolution numbers to |eta|=4.0. Implemented in delphes_EIC.

Thanks to Rey Cruz-Torres: Extended d_o/z_o Model!


On June 29, Rey provided all-silicon d_0/z_0 resolution numbers to |eta|=4.0. Implemented in delphes_EIC.


EIC Beam Implementation

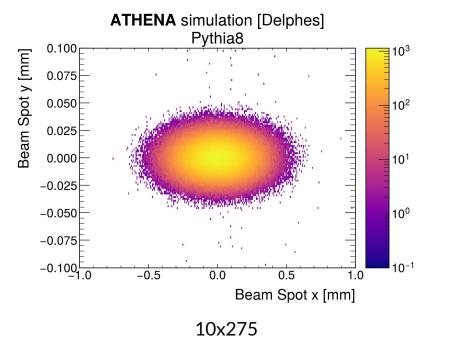
Two-stage process with Delphes:

- Run eicSimuBeamEffects after modifying delphes_EIC/pythia8cards/CC_DIS .cmnd to incorporate the Pythia8-level beam crossing (25mrad)/size effects.
 - Generate HepMC2 (Delphes now accepts HepMC3 - no reason to persist in this deprecated format)
- Run DelphesHepMC2 to process files from first step.
 - Added the BeamSpotFilter module to the delphes_card_allsilicon_3T.tcl card to find the actual beamspot, now that it is no longer artificially set to the origin.

Brian Page's implementation in <u>eicSimuBeamEffects project</u>

Beam Parameters

As implemented in Pythia8. An EIC Beam Model class specifically configures and handles the crossing angle aspects of the model, bunch length, etc. This is passed to Pythia8 at compile-time.


```
! 3) Beam parameter settings. Values below agree with default ones.
Beams:idA = 2212
                                      ! electron
Beams:idB = 11
                                      ! proton
Beams:eA = 275
                                      ! proton energy
Beams:eB =10
                                      ! electron energy
Beams:frameType = 2
Beams:allowMomentumSpread = on
Beams:sigmapxA = 0.000065
Beams:sigmapyA = 0.000065
Beams:sigmapzA = 0.00068
Beams:sigmapxB = 0.000116
                                         Sizes in mm,
Beams:sigmapyB = 0.000084
                                         energies in GeV.
Beams:sigmapzB = 0.00058
Beams:allowVertexSpread = on
Beams:sigmaVertexX = 0.122
Beams:sigmaVertexY = 0.011
Beams:sigmaVertexZ = 0.0
```

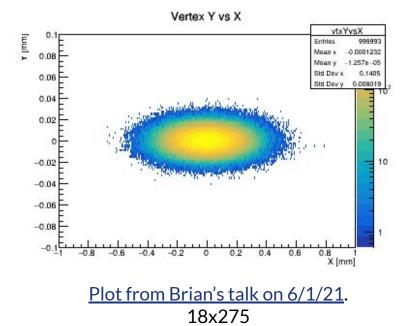
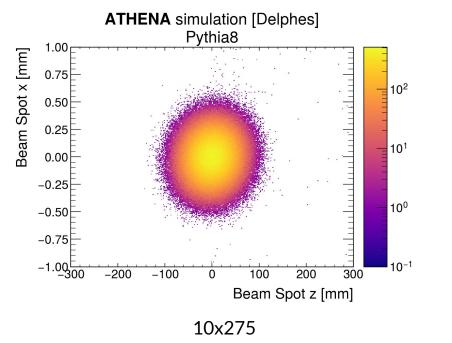
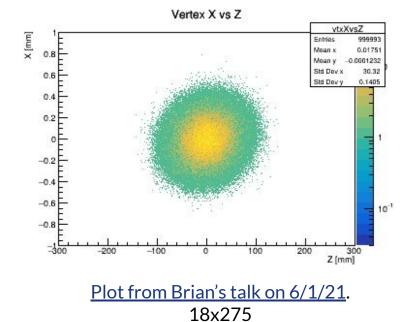
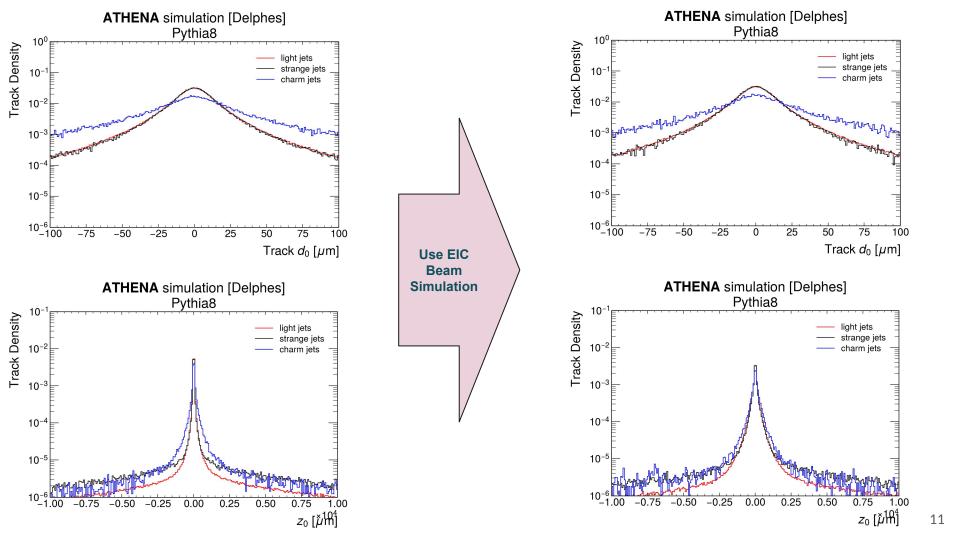
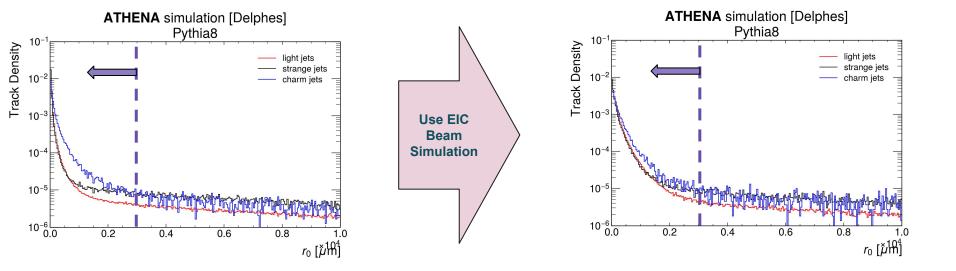

Species proton electron proton electron proton electron proton electron proton electron Energy [GeV] 275 18 275 10 100 10 100 5 41 5 CM energy [GeV] 140.7 104.9 63.2 44.7 28.6 Bunch intensity [10¹⁰] 6.9 13.3 18.9 6.2 17.2 6.9 17.2 4.8 17.2 2.6 No. of bunches 290 1160 1160 1160 1160 2.5 2.5 0.38 1.93 Beam current [A] 0.227 2.5 0.69 0.69 1 3.3/0.3 391/26 RMS norm. emit., h/v [µm] 5.2/0.46 845/70 3.2/0.29 391/26 2.7/0.25 196/18 1.9/0.45 196/34 RMS emittance, h/v [nm] 17.6/1.6 24.0/2.0 11/1.0 20/1.3 30/2.7 20/1.3 26/2.3 20/1.844/1020/3.5 β^* , h/v [cm]] 417/38 306/30 265/24 149/19 94/8.5 143/1880/7.2 103/9.290/7.1 196/21 169/15 IP RMS beam size, h/v [um] 271/24 172/16 143/13 198/27 11.1 11.1 11.1 11.1 7.3 Kr RMS $\Delta \theta$, h/v [µrad] 65/65 89/82 65/65 116/84 180/180 118/86 180/180 140/140 220/380 101/129 BB parameter, h/v [10⁻³] 3/3 92/100 12/1272/100 12/1272/10014/14 100/100 15/953/42 RMS long. emittance [10⁻³, eV·s] 36 36 21 11 21 7 0.7 RMS bunch length [cm] 6 0.9 6 0.7 0.7 7 7.5 0.7 10.9 5.8 5.8 6.8 RMS $\Delta p / p [10^{-4}]$ 6.8 6.8 9.7 9.7 6.8 10.3 Max. space charge 0.007 0.004 0.026 0.021 0.05 neglig. neglig. neglig. neglig. neglig. 4.3 1.5 Piwinski angle [rad] 2.8 0.9 1.4 5.2 6.1 1.7 4.2 1.1 Long. IBS time [h] 3.2 2.53.1 3.8 2.0Transv. IBS time [h] 2.02.0 2.0/4.02.0/4.03.4/2.1 Hourglass factor H 0.99 0.98 0.94 0.91 0.93 Luminosity [1033cm-2s-1] 0.32 3.14 3.14 2.92 0.44

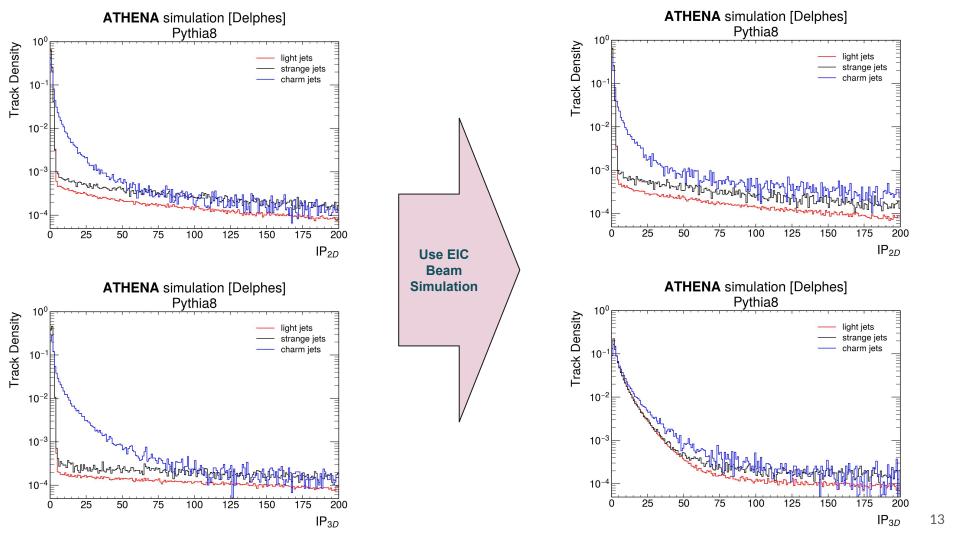
Table 3.4: EIC beam parameters for different center-of-mass energies \sqrt{s} , with strong hadron cooling. High acceptance configuration.

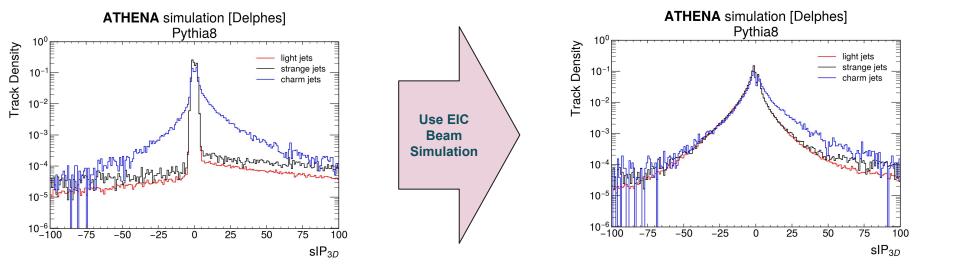

Table from <u>EIC CDR</u>










The purple dotted line and arrow indicate the maximum value of $r_0 (=\sqrt{[z_0^2 + d_0^2]})$, 3mm, that we used in the YR era to eliminate overly long-lived particles like K_s and Λ compared to charm hadrons. This was a "cheap" way to do this without vertexing.

We see so far that with the EIC beam model in place:

- d₀ is relatively robust, which makes some sense: the beam spot spread in x and y is not huge (at the ~10s of micron level compared to hadron flight lengths of ~100s of microns or more)
- z₀ is <u>not robust</u> and is greatly diluted by the large spread of the beam spot in z. Again, this is sensible given that this spread (~10,000s of microns) exceeds typical hadron flight lengths.

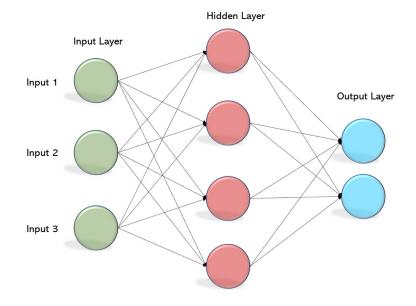
We should expect IP_{2D} to be robust but IP_{3D} to be degraded (and thus also for sIP_{3D} to be degraded).

- The original **sIP3dTagger** approach is now <u>too naive</u> and cannot be expected to be performant.
 - Indeed, this is what we observe. Leaving the tagger configuration unchanged (see box right), we maintain 20% charm jet efficiency but increase light-jet efficiency from 0.5% -> 10%!!!
- Use approach more aligned with LHC methodologies:
 - Combine the IPxD variables (IP2D and sIP3D) using a multivariate approach.
 - Specific topology: Use the leading 4 tracks in the jet and classify jets using the pair of variables (IP2D, sIP3D) for each of the 4 tracks (8 total inputs)
 - Alternatively, we could use a likelihood approach, but a Multi-Layer Perceptron NN is just as easily implemented in the code and balances between too simple and too complex.

sIP3DTagger

At least 2 tracks in a jet with ...

- $p_{T}^{trk} > 0.5 \text{ GeV/c}$
 - sIP_{3D} > 3
- r₀ < 3mm


CharmIPXDTagger

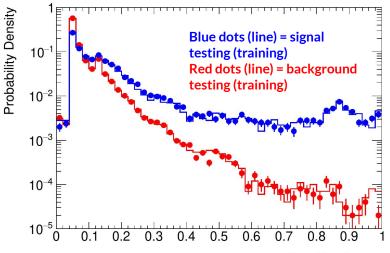
Training and Validation Approach

I generated a <u>dedicated Pythia8/Delphes sample</u> <u>for training</u>. This sample will never be used for performance assessment.

Training/Testing Approach:

- Use 10,000 (100,000) charm (light) jets for training
- Use an equal-sized sample for testing
- Use ReLU for the activation function and transform the inputs so that they are in consistent ranges (e.g. [0,1])
- Architecture: 8:24:1 (input:hidden:output)
- Use 1000 epochs for training

Variable Ranking - Before and After Training


Ranking input variables (method u Ranking result (top variable is b	
Rank : Variable	: Separation
<pre>1 : Jet_FiducialJet_TAG_t1_sIP 2 : Jet_FiducialJet_TAG_t2_sIP 3 : Jet_FiducialJet_TAG_t1_IP2 4 : Jet_FiducialJet_TAG_t2_IP2 5 : Jet_FiducialJet_TAG_t3_IP2 6 : Jet_FiducialJet_TAG_t3_sIP 7 : Jet_FiducialJet_TAG_t4_IP2 8 : Jet_FiducialJet_TAG_t4_SIP</pre>	3D : 4.222e-02 D : 3.748e-02 D : 3.227e-02 D : 2.158e-02 3D : 1.781e-02 D : 1.362e-02
Estimated using separation: $\langle S^2 angle = rac{1}{2}$	$\int \frac{(\hat{y}_{S}(y) - \hat{y}_{B}(y))^{2}}{\hat{y}_{S}(y) + \hat{y}_{B}(y)} dy$

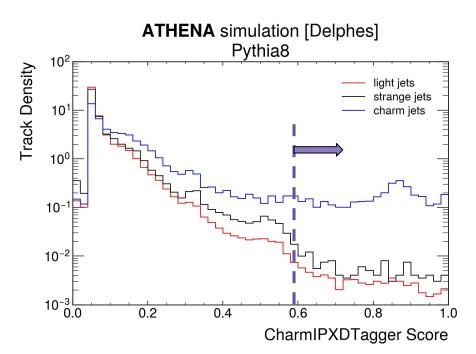
After training, rank using importance (sum of the weights-squared of the connections to nodes in the first hidden layer) \rightarrow the MLP ranks IP2D as more than or as highly valuable as IP3D, as we would expect!

Overtraining Assessment

No strong evidence of overtraining, though this can certainly be improved (likely too many epochs and/or need more jets in training and testing samples).

• K-S Test of compatibility of training/testing shapes in signal (background) yield 0.044 (0.83).

Classifier Output


Testing efficiency compared to training efficiency (overtraining check)

DataSet	MVA	Signal efficiency:	from test sample (f	rom training sample)
Name:	Method:	@B=0.01	@B=0.10	@B=0.30
dataset_ip3dtagger	CharmIP3DTagger:	0.119 (0.120)	0.352 (0.352)	0.615 (0.613)

Performance Assessment

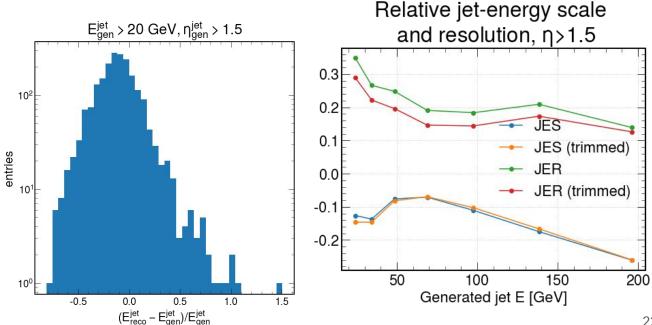
Optimize cut on CharmIPXDTagger by minimizing the expected light-jet background subtraction error in a target luminosity of 100fb⁻¹.

- Best selection: CharmIPXDTagger > 0.58
- Charm (*Light+Strange*) Efficiency: 6.8% (0.14%)
 - Expect about 2000 tagged charm jets assuming CT18NNLO proton PDF and using this approach alone (expect also a comparable number of light+strange jets passing tagging)

The above figure is an evaluation of the tagger on a sample <u>independent</u> of the training and testing samples.

Next Steps in Jet Tagging

- Beam crossing and shape effects have a significant impact on jet tagging, as expected.
 - Naive approach using single sIP_{3D} variable no longer viable switch to multivariate approach using 4 leading track IP_{2D} and sIP_{3D} values.
- Next steps:
 - Revisit K-Tagger and e-Tagger in light of beam shape implementation.
 - Vertexing available in Delphes -> move on to look at secondary vertex information for jet flavor tagging (e.g. mass, number of tracks, displacement significance relative to interaction point, etc.)
- <u>Translate tagging yield into impact on charm jet population from 1 year of EIC collisions -></u> <u>impact on intrinsic strangeness assessment.</u> (work in collaboration with Fred Olness at SMU)

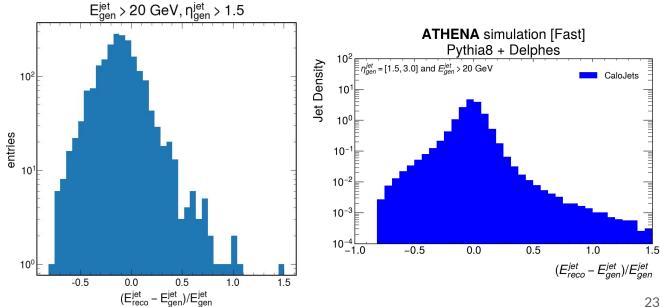

Fast vs. Full Simulation -Calorimeter-Only Jets

<u>NOTE</u>: fast simulation jets in this section are matched to generator-level (particle-level) jets using a ΔR matching and the requirement that $\Delta R_{max} < 0.5$ and no generator-level jet is used more than once for a match.

Full Simulation

Miguel posted on <u>Slack</u> <u>chat</u> some studies of calorimeter-only jets (R=1) in full simulation using a preliminary calibration of clusters.

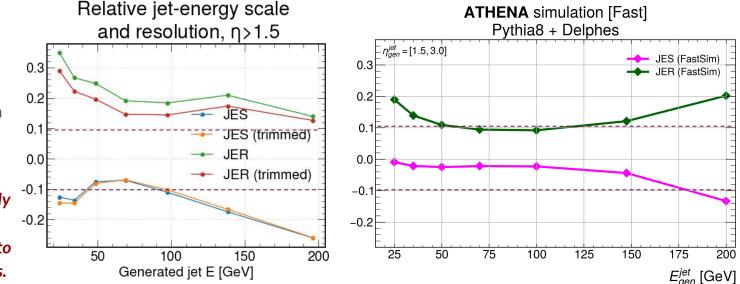
He asked me to do the same in Delphes, looking at Calorimeter-Only Jets (jets built from calorimeter towers with no energy flow applied).



Fast (1M events) Compared to Full Simulation

The JES and JER are determined from the mean and width, respectively, of the quantity

(REC - GEN)/GEN

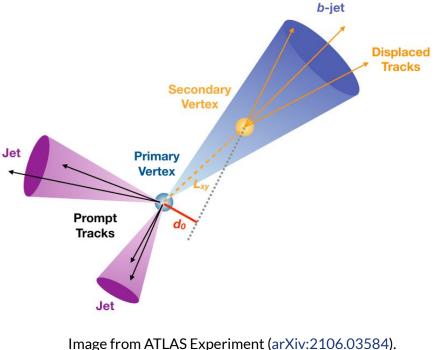

This quantity is plotted for jet energy on the right in fast simulation. compared to full simulation on the left.

Fast (1M events) Compared to Full Simulation

In Delphes, the JES is closer to zero and the JER closer to 10% - in both cases better than in full simulation.

NOTE: In Delphes, the calorimeters extend only to $|\eta|$ =3.5, whereas in full simulation they go to 4.0. All jets are R=1 jets.

±10% lines indicated on vertical axes for comparison. Calorimeter model in fast simulation comes from YR, with ECAL (HCAL) constant resolution terms of 2% (10%) in the forward direction.



Basic Ideas

Charm quark jets (e.g. produced from CC DIS $s \rightarrow c$ reactions) contain long-lived heavy charm hadrons that produce displaced substructures (vertices) within the jet. This can "tag" the jet as heavy flavor.

Current efforts focused on:

- Displaced track counting
- Particle ID of Kaons (fast simulation) and Electrons (Full-Simulation Calorimeter-based approaches)
 - \circ *c*→*e* + *X* \cong 13% (inclusive)
 - $c \rightarrow K(OS^*) + X \cong 35\%$ (inclusive)
 - $c \rightarrow K(SS^*) + X \cong 5\%$ (inclusive)

nage from ATLAS Experiment (<u>arXiv:2106.03584</u>) Depicted for pp collisions and b-jets, but applies equally well to charm jets at ep collider.

Software Framework

- <u>PYTHIA8</u>(.305) for CC DIS collisions (ep at 10 on 275 GeV) -> 20 million collisions
- <u>DD4hep</u> (athena, ip6, etc.) for full simulation; single-particle events for now, only calorimetry.
- <u>DELPHES</u> for fast simulation of final-state particles/smearing for detector effects (tracks, neutrals, jets, particle flow)
- <u>delphes EIC</u> for ATHENA-like detector configuration, including tracking, PID, ECAL, and HCAL.
 - All-silicon tracker model (momentum smearing and resolution), 3T magnetic field.
- <u>OLeAA</u> for analysis of DELPHES files
 - A simple analysis framework I sketched up last year (OLeAA = Own Little e-A Analysis)
 - Analyze small output files in Jupyter/UPROOT

