EIC All-Silicon Jet Performance

Jets in e+P PYTHIA Simulation

- PYTHIA 8
 - $Q_{\min}^2 \ge 16 \, (\text{GeV}/c^2)^2$ - $\sqrt{s} = 89 \, \text{GeV}$
 - Electron beam: 20 GeV
 - Proton beam: 100 GeV

- Jets
 - Charged Jets
 - $E_{\text{Reco}}^{\text{Jet}} > 4.0 \text{ GeV}$
 - Anti- $k_{\rm T} R = 1.0$
 - ΔR (jet-electron) > 0.5
 - "Electron Veto"

- Jet Constituents
 - $N_{\text{constituents}} \ge 4$
 - $p^{\text{constituent}} \ge 60 \text{ MeV}/c$
 - η -dependent $p_{\rm T}^{\rm constituent}$ cut
 - Cut $1.06 < |\eta| < 1.13$
 - Central barrel meets forward layers

Charged Jet Resolutions dP/Pφ 20 - B = 3.0 T20 - B = 1.4 TB = 3.0 TB = 1.4 TNo N_{Missed} Cut No N_{Missed} Cut No N_{Missed} Cut No N_{Missed} Cut 15 15 dφ[15 dp/p[%] 10 → 4 < *p* < 6 GeV/*c* → 4 ─ 6 ← 6 8 < *p* < 10 GeV/*c* ← 8 5 5 10 < *p* < 12 GeV/*c* 12 < p < 15 GeV/c - 12 15 < p < 20 GeV/c 15 < p < 20 GeV/c 0 -2 0 -2 0 -2 2 η ŋ η η 20 20 15 15 15 [%]d/dp 10 10 E 10 10 dφ → -3.0 < η < -1.5</p> $-3.0 < \eta < -1.5$ $-1.5 < \eta < -0.5$ $-1.5 < \eta < -0.5$ 5 5 -0.5 < η < 0.5 $-0.5 < \eta < 0.5$ ← 0.5 < η < 1.5</p> \rightarrow 0.5 < η < 1.5 $1.5 < \eta < 3.0$ $-1.5 < \eta < 3.0$ 10 15 10 15 20 20 10 15 p [GeV/c] 10 15 20 5 20 *p* [GeV/*c*] p [GeV/c] *p* [GeV/*c*]

- $-3.0 < \eta < -1.5$ $-1.5 < \eta < -0.5$ $-0.5 < \eta < 0.5$ $-0.5 < \eta < 1.5$ $-1.5 < \eta < 3.0$
- ↓ 4
 ↓ 6
 ↓ 8
- → 10

Charged Jet EIC Observables

- 1. Charged Jet Fragmentation Function
- 2. Electron-Jet Correlations
 - Sensitive to $p_{\rm T}$ broadening effects in e+A
 - Can constrain $\hat{q}L$, and TMD of nucleus

Charged Jet Fragmentation

Electron-Jet Correlation

7/6/21

Theory Comparison

Full Simulation in 3.0 and 1.4 T Field

https://arxiv.org/pdf/1812.08077.pdf

Fernando TA

7/6/21

Breakdown of Uncertainty
$$\Delta \varphi \equiv \varphi_e - \varphi_{jet} - \pi$$

- 1. Truth and Reco Jet $\Delta \varphi$ Distributions
 - $(\Delta \varphi_{\text{truth}}^{\text{charged}} \Delta \varphi_{\text{reco}}) / \Delta \varphi_{\text{truth}}^{\text{charged}}$
- 2. Full and Charged Jet $\Delta \varphi$ Distributions • $(\Delta \varphi_{\text{truth}}^{\text{charged}} - \Delta \varphi_{\text{truth}}^{\text{full}}) / \Delta \varphi_{\text{truth}}^{\text{charged}}$
- 3. Unfolding Uncertainty~1-2%

1 & 2: Following similar procedure for extracting σ_{φ} , but for $\Delta \varphi$ (e.g. $\sigma_{\Delta \varphi}$)

* I also have the previously reported $d\phi^{jet}$ Distributions

Fernando TA	7/6/21	
-------------	--------	--

1. Truth and Reco Jet $\Delta \varphi$ **Distributions** • $(\Delta \varphi_{\text{truth}}^{\text{charged}} - \Delta \varphi_{\text{reco}}) / \Delta \varphi_{\text{truth}}^{\text{charged}}$

7/6/21

Fits also work well for 3.0 T Field

Fernando TA

7/6/21

2. Full and Charged Jet $\Delta \varphi$ Distributions • $(\Delta \varphi_{\text{truth}}^{\text{charged}} - \Delta \varphi_{\text{truth}}^{\text{full}}) / \Delta \varphi_{\text{truth}}^{\text{charged}}$

Potting $(\Delta \varphi_{\text{truth}}^{\text{charged}} - \Delta \varphi_{\text{truth}}^{\text{full}}) / \Delta \varphi_{\text{truth}}^{\text{charged}}$

Bin: $-0.5 < \eta^{\text{jet}} < 0.5$, $10.0 < p^{\text{jet}} < 12 \text{ GeV}/c$

Very narrow peak at 0: Charged/Neutral jets seems to have small impact

7/6/21

Theory Curves Uncertainty $\Delta \varphi \equiv \varphi_e - \varphi_{\rm jet} - \pi$

- **1.** Truth and Reco Jet $\Delta \varphi$ Distributions
 - $(\Delta \varphi_{\text{truth}}^{\text{charged}} \Delta \varphi_{\text{reco}}) / \Delta \varphi_{\text{truth}}^{\text{charged}}$

Obtain $\sigma \Delta \varphi$ from double gauss fits

- **2. Full and Charged Jet** $\Delta \varphi$ **Distributions** • $(\Delta \varphi_{\text{truth}}^{\text{charged}} - \Delta \varphi_{\text{truth}}^{\text{full}}) / \Delta \varphi_{\text{truth}}^{\text{charged}}$
- 3. Unfolding Uncertainty
 - ~1-2%

Sum in quadrature with $\sigma\Delta \varphi$

Next Step: Report lepton-jet correlations in backward, central, and forward regions

End.

7/6/21

7/6/21

Luminosity Scaling

•
$$L_{\rm EIC} = 10 \, {\rm fb}^{-1}$$

•
$$L_{\text{gen}} = N_{\text{events}} / \sigma_{e+p} \longrightarrow$$

• Scale =
$$L_{\rm EIC}/L_{\rm gen}$$

• $\sigma_{e+p} = 9.27 \times 10^{-5} \text{mb}$

•
$$N_{\text{events}} \approx 2,000,000$$

•
$$L_{\rm gen} = 2.49 \, {\rm fb}^{-1}$$

$$Scale = 0.401$$

Electron Smearing + E/P cut

- Smear electron energy in order to simulate an E/P selection
- From YR, backwards EMCal requirement:
 - $\sigma(E)/E \approx 2 \% / \sqrt{E} \oplus (1-3) \%$
 - Obtain σ_E , and smear E according to Gaussian distribution ($\mu = E$, $\sigma = \sigma_E$)
 - Example: E = 20.4, $\sigma_E = 0.62$, $E_{\text{smeared}} = 20.6$

E/P Selection

7/6/21

E/P Without Smearing

Electron E/P

7/6/21

Uncertainty Exploration

Error Propagation

- Fit+Toy MC (in progress)
 - Fit black to TF1
 - Run toy MC $\Delta \varphi$, with $\sigma_e \oplus \sigma_{\rm jet}$
 - Smears theory $\Delta \phi$ distribution
 - Not the same as smearing $\sigma_e, \sigma_{\rm jet}$ separately
 - Trouble accounting for bin migration effects
 - Theory curve can only be smeared in some form of this method
- Smear Pythia
 - Apply $\sigma_e, \sigma_{\rm jet}$ separately to electron+jet
 - Obtains "smeared truth"
 - \approx reco?
- Apply relative difference between reco and truth $\Delta \varphi$
 - Should account for bin-migration effect
 - Resolutions are primarily what cause reco and truth different?

Toy MC

Need to implement 0- π wrap

Pol9

Older Distribution Studies

Two Populations of Jets

Fernando TA

7/6/21

Charged Jet Momentum Response

Clear truth-reco correlation, but with significant number of off-diagonal hits

Eor	non	do	$T\Lambda$
	Iali	uu	

7/6/21

Lepton+Jet Theory

Resolution (%) = (Truth-Reco) / Truth

$|\eta| < 3.0$ (All Regions)

Fernando TA

Two Populations of Jets

Example of Distribution

 $6 (<math>\leftarrow$ Momentum Label)

7/6/21

7/6/21

7/6/21

$d\theta$ [mrad]

Jet Momentum distributions (two populations)

Recontsructed Jet η

Fernando TA

11/30/2020

Jet Component Distributions

Jet Component η

The central barrel layers meet the endcap of the all-sillicon tracker at $\eta \approx 1.1$, jets near this region are omitted in the resolution calculation

Fernando TA

Counts

Reconstructed Jet N Component

Fernando TA

11/30/2020

No. Neutral Components in Original Truth Jet VS. dP/P

Fernando TA

^{11/30/2020}

 $N_{\rm missed} = N_{\rm constituents}^{\rm truth} - N_{\rm constituents}^{\rm reco}$

No. Missed Jet Components VS. dP/P

Fernando TA

Are lost constituents and poor dP/P due to low pT constituents?

11/30/2020

Details for 70-150 MeV/c (B=1.5 T)

Abstract:

latest tracking performance numbers as provided recently to DWG conveners (also circulated directly to the PWG conveners).

Referenced Files

1 Tracking characteristics

Latest version of tracking from EICUG YR Tracking WG Wiki

Notes:

Minimum pT for B = 1.5 T: 100 MeV/c for -3.0 < eta < -2.5 130 MeV/c for -2.5 < eta < -2.0 70 MeV/c for -2.0 < eta < -1.5 150 MeV/c for -1.5 < eta < -1.0

Minimum pT for B = 3 T: 150 MeV/c for -3.0 < eta < -2.5 220 MeV/c for -2.5 < eta < -2.0 160 MeV/c for -2.0 < eta < -1.5 300 MeV/c for -1.5 < eta < -1.0

https://physdiv.jlab.org/DetectorMatrix/

11/30/2020

|dP/P| < 0.03

|dP/P| > 0.03

An η dependent $p_{\rm T}$ cut does not seem to be a likely solution either