EIC Calorimetry WG Meeting

AstroPix for EIC Calorimetry

ANL EIC Calorimetry Team

W. Armstrong, S. Joosten, J. Kim, J. Metcalfe, Z.E. Meziani, C. Peng, M. Scott, M. Żurek

07/06/2021

ATLASPix Final version of detectors for ATLAS experiment

Space-based CMOS detector Designed for gamma-ray detection

AstroPix APS

AstroPix_v1 Engineering Development from ATLASPix

Modify design for low power, better energy resolution, etc. (larger pixel size, slower) Changes to increase fidelity, optimize pixel size, readout architecture

Space-based CMOS detector Designed for AMEGO-X

AMEGO-X APS

AstroPix Engineering Development from AstroPix

AMEGO-X

- Photons in this energy range:
 - Interact via Compton scattering and pair production
- And of course, it detects MIPS Gamma rays are detected via either Compton scattering or producing electron-positron pairs in the detector material

AMEGO-X

Gamma-ray detector

- 4 towers
- 40 layers
- 160 segment frames
- 95 AstroPix quad modules per segment frame
 - 15,200 AstroPix
 quad modules
 - 60,800 front-end
 read-outs

AMEGO-X Tracker

Single piece carbon fiber frame

- 0.45 m x 0.45 m
- Low dead material

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

• Passive cooling only

•

- V1 measured 0.95 mW/cm²
- V2 expect ~0.75 mW/cm²

AstroPix

- AstroPix is a monolithic CMOS sensor
 - Collects via drift
 - 180 nm CMOS
- Technology grant from NASA for the development
 - Collaboration between Argonne, NASA Goddard, Karlsruhe Institute of Technology
- Baseline technology for AMEGO-X space instrument proposal

Parameter	Value	Unit
energy collectable	25	keV
energy collectable	700	keV
ower (per APS)	3	mW
Mass (per APS)	0.468	g
Voltage Bias	-120 V (configurable)	V

AstroPix

- 10 bit time-over-threshold and 12 bit time stamp from AMEGO-X energy resolution and timing req.
- easy to redesign for EIC if you don't use it out-of-the-box
- Quad SPI interface to enable chip-to-chip I/O
- Rise time < 10 ns

AstroPix_v1 in carrier board

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Analog measurement of AstroPix_v1

AstroPix

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

- Read out scheme is <u>event driven</u> by a pixel notifying the digital CMOS section that a hit occurred → self-triggered
 - Charge is amplified in pixel by a CTIA (Capacitive Trans Impedance Amplifier)
 - One signal goes to identify the column and one goes to identify the row of the pixel that was hit
 - The hit also causes the time over threshold (TOT) clock to start
 - Threshold levels are determined on the ground during calibration and testing
 - This will be adjustable/programmable
 - The energy deposited in the silicon is directly proportional to the TOT
 - Energy range and # of bits could be modified as needed
- The signal is passed on a bus from chip-to-chip until it reaches the fpga
 - Done to minimize dead material, hence gamma conversion in nonactive material

- The six top buses are common for all arrays in one row
 - All 6 will be common for all arrays in a segment
- 14 bottom buses common for all arrays in one row
 - The 2 clocks and 1 hold will be common for all arrays in a segment = 3 per segment
 - Each row will have a unique interrupt = 20 interrupts per segment
 - 8 voltages: These should also be common for all arrays in a segment
 - Additionally, the 6 lines in the top bus and 6 in the bottom bus should be the same for each APS = 8 per segment
- 5 chip to chip SPI I/O lines common for all arrays in one row (daisy chained)
 - The SPI I/O should be unique to each row in the segment, but just 2 SPI clocks. This gives us 2 clocks + 4*20 = 82 unique lines per segment
- The SPI and TOT clocks are differential requiring two lines each = 3 more unique lines

AstrPix

Summary

- AstroPix designed for space-based applications
- Optimized for low mass, low power
- Could be re-optimized for EIC if needed or used out-of-the-box
- Low cost:
 - 56 chips/wafer * 70% yield = 156 cm²
 - Wafer cost
 - Wafers: \$115k + \$1.6k/wafer
 - Includes wafer + process cost
 - 10 m² \rightarrow 65 wafers \rightarrow \$219k
 - +\$104k for each additional 10 m²
 - ~\$1.2M for 100 m²

Backup

