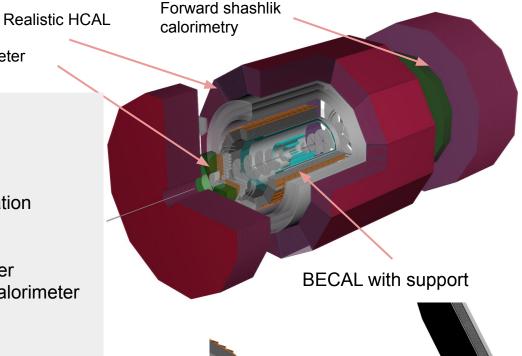
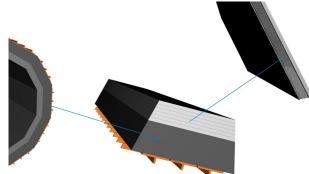


Collaboration Meeting

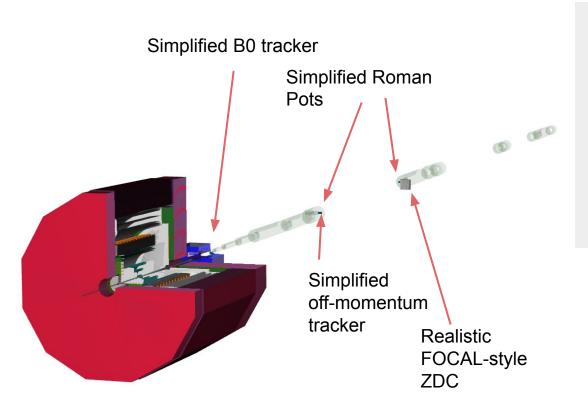
Friday 2021-07-08


The Software and Computing WG Conveners:
Andrea Bressan (University of Trieste and INFN),
Dmitry Romanov (Jefferson lab),
Sylvester Joosten (Argonne National Laboratory),
Whitney Armstrong (Argonne National Laboratory),
Wouter Deconinck (The University of Manitoba)


Simulation status (and "baseline" geometry implementation)

Calorimetry WG

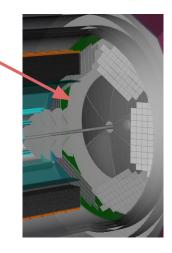
Hybrid electron endcap calorimeter with crystal


- Ready to study impact of magnet on HCAL:
 - Realistic HCAL geometry
 - **V** Solenoid material
 - W New Helmholtz added
 - HCAL clustering and energy calibration
- ECAL system well-developed:
 - Barrel ECAL:
 - V Barrel SiW imaging calorimeter
 - V Barrel hybrid SiW + WSciFi calorimeter
 - Electron-endcap ECAL:
 - Crystal calorimeter
 - **V** Glass calorimeter
 - W Hybrid electron endcap for baseline
 - WSciFi calorimeter
 - Reconstruction (2D, 2+1D and 3D clustering)
- Geometry:
 - Finalize geometry for "baseline" setup with longer barrel/smaller negative endcap ECAL

Calorimetry delegate: Vladimir Berndnikov S&C WG contacts: Wouter Deconinck & Sylvester Joosten

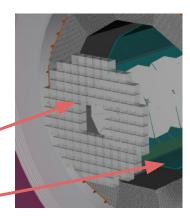
Far-forward & Far-backward WGs

- FF being worked on by Alex Jentsch
 - Magnets and detectors updated to latest design
 - Flip IR orientation to right-handed coordinate system ("big flip" in 2 weeks)
 - Will add realistic beam-pipe model
- FB
 - 🚧 🔤 IR implementation


FF delegate: Alex Jentsch
FB delegate: Jaroslav Adam
S&C WG contact: Whitney Armstrong

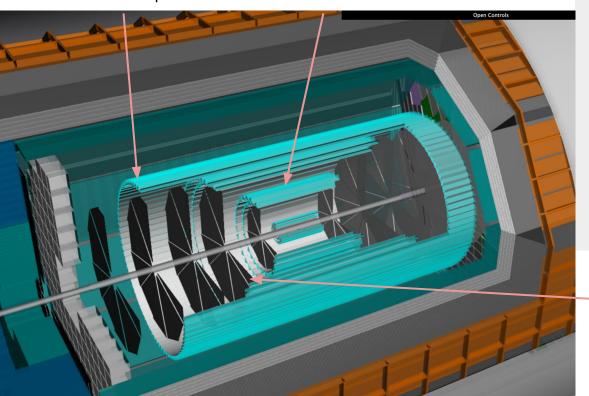
PID WG

- dRICH (Christopher Dilks, Chao Peng)
 - In the second of the second of
 - mathematical graphs
 geometry being adjusted by Christopher
 - Value have field maps for both magnet setups.
- mRICH (Murad Sarsour, Whitney Armstrong)
 - received baseline realistic geometry (implemented in fun4All) from Murad
 - implement realistic detector in DD4hep (90% complete)
- DIRC (Grzegorz Kalicy, Dmitry Romanov)
 - simplified geometry
 - o implement realistic detector in DD4hep
- TOF (Zhenyu Ye)
 - LGAD implementation with realistic services


gas-RICH starting point for dRICH implementation

LGAD implementation ongoing (Zhenyu)

mRICH geometry changing quickly


DIRC needs the most work

Tracking WG

Outer LGAD layer not part of the "0-0-0" setup

Barrel staves as in ITS2 TDR

- ******* silicon tracker
 - Material validation (Shujie Li)
 - Vertex layers to be changed to cylindrical geometry
 - Support cones
- Value barrel MPGD
 - o mwgas (Francesco Bossu)
- V GEM
- Reconstruction:
 - geometries fully functional with ACTS
 - updating algorithms for ACTS v8.3 (tracking benchmarks ongoing)

Disks are wedges with sensitive layer and average material backing. Needs better constraints from WG

Physics WGs

- V Generic (unvalidated) afterburner
 - Update afterburner based on the presentation by Brian Page
- Collect physics analysis portfolio
- minimum First physics-ready production next week
 - gaps in baseline detector reconstruction filled-in with fastMC-style algorithms.
- material example on data analysis

Exclusive & Tagging delegate: TBD S&C WG contact: Sylvester Joosten

Inclusive delegate: Barak Schmookler S&C WG contact: N/A

Jets, HF & EW-BSM delegate: Brian Page S&C WG contact: Wouter Deconinck

SIDIS delegate: Christopher Dilks S&C WG contact: N/A

DAQ WG

DAQ delegates: Alexandre Camsonne &

Jeffery Landgraf

S&C WG contact: Andrea Bressan

Tutorial plans

Documentation portal: doc.athena-eic.org

Full simulation tutorials

<u>eic-ip6-software-l@lists.bnl.gov</u> #software-helpdesk on Slack

- Full reconstruction tutorial will be posted as online-only tutorial, with #software-helpdesk for support. We can organize an in-person Q&A session later as needed
- Analysis tutorial/example on data analysis (aimed and Physics WGs). Will be as website.

Computing Update

Resource requirements

- Still need initial estimates from exclusive, PID & calorimetry
- Estimates are not carved in stone and we will explore synergies between WGs where appropriate
- Currently a lot of computing resources available!

Large scale data productions

- Input: HepMC files preferred (pip install mcconv for other formats)
- Full simulation with current detector model, all bells and whistles:
 - Typical: 0.25 to 3.0 s/event, <500MB RAM RSS, 30 kB to 750 kB output size/event
 - Slightly decreasing performance as geometry features are added
 - Full ROOT files on S3 under <u>ATHENA/FULL/</u>
- Reconstruction
 - o Focus on full calorimetry clustering (Ecal and Hcal), tracking will be added next
 - Reco ROOT files on S3 under <u>ATHENA/RECO/</u>
- Full simulation: ~weekly repetition; reconstruction: every few days
- Written to work on any slurm batch system; performed at Compute Canada
 - Currently also working on trial runs on OSG at the ~2k job scale for single particle events)

Simulations reruns are currently on hold until track reconstruction available and baseline geometry available.

Overview of Available Productions

- DIS: {5x41, 18x275} ⊗ {CC, NC} ⊗ {Q2 > 10, 100, 1000 GeV} (1M each)
- EXCLUSIVE:
 - eslight rho test production in progress
 - o pi-neutron, K-Lambda, K-Sigma in progress
- SINGLES
 - {3 to 50 deg, 45 to 135 deg, 130 to 177 deg} ⊗ {e-, pi+, kaon0L, neutron, gamma} ⊗ {1, 2, 5, 10, 20, 50 GeV} (1M each)

Dashboards in progress...

RECO	hEndcap (3 to 50 deg)						Barrel (45 to 135 deg)						eEndcap (130 to 177 deg)					
	1	2	5	10	20	50	1	2	5	10	20	50	1	2	5	10	20	50
e-													~	~	~	~	~	~
gamma							~	~	~	~	~							
kaon0L	~	~	~	~	~		~	~	~	~	~							
neutron							~	~	~	\checkmark	~							
pi+	~	~	~	~	~	~	~	~	~	~	~	~						
pi0																		12

Software & Computing WG

Software & Computing Conveners:

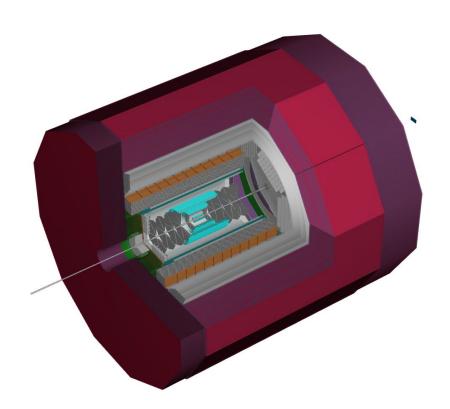
Whitney Armstrong, Andrea Bressan(*), Wouter Deconinck, Sylvester Joosten, Dmitry Romanov (*)- liaison to EICUG software group

Day 0 WG support:

Kolja Kauder, Miguel Arratia, Stephen Sekula, Dmitry Romanov, Yulia Furletova, Andrea Bressan

Full simulation/reconstruction team

Whitney Armstrong, Miguel Arratia, Wouter Deconinck, Sylvester Joosten, Jihee Kim, Chao Peng, Tomas Polakovic, Dmitry Romanov, Marshall Scott, Zhenyu Ye, Ziyue Zhang, Maria Żurek


...and a rapidly growing amount ATHENA collaborators!

Documentation portal: doc.athena-eic.org

Full simulation tutorials

<u>eic-ip6-software-l@lists.bnl.gov</u> #software-helpdesk on Slack Bi-weekly software meeting: Thursday 12:00pm EDT

ATHENA central detector