QED radiative effects in NC event generators

Barak Schmookler

1

Outline

- □I'll show comparisons of the inclusive NC cross section at the Born level from *Pythia6*, *Djangoh*, and *Pythia8* with calculations using the input PDF.
- □Next, I'll discuss the results of *Djangoh* and *Pythia6* NC simulations when including QED radiative effects.

NC cross section extraction

Inclusive NC events are generated at the Born level for the 3 simulation programs using the *cteq6l1* (10042) – LO fit w/ LO α_s – and the cross section is extracted using the binning shown.

The average cross section in each bin for the simulation programs is compared to a calculation using the PDFs directly.

NC cross section extraction

Cross section comparison – simulation and calculation

Cross section comparison – simulation and calculation

Some comments:

- □ The calculation (blue curve) shows the result of calculating at LO the average reduced cross section in each bin using the equation on the previous slide.
- Pythia6 is higher than Djangoh at low x. This is probably due to Pythia6 including additional processes.
- Pythia8 (at least the input file I am using) has strange behavior at low-x.
- Pythia6 will agree with the calculation at higher Q² if only LO process events are selected (see next slide).

Cross section comparison – Pythia6 process selection

Radiative effects in the simulation programs

Djangoh includes QED radiation based on the *HERACLES* program.
The BNL version of *Pythia6* includes QED radiation based on the *RADGEN* program.

□I'll focus mostly on *Djangoh* today.

Radiative effects channels in Djangoh

Radiative effects channels in Djangoh

Radiative effects channels in Djangoh

$$q \to q - k$$

In incoming proton rest frame:

$$W_{true}^2 = W^2 - 2E_{\gamma}(\nu + M - \sqrt{\nu^2 + Q^2}\cos\theta_{\gamma}),$$

 $W^2 = Q^2(1/x - 1) + M^2$

13

This issue is only important at lower Q²

Radiative correction factor – scattered electron method

One event in *PythiaeRHIC/RADGEN*

1 21	11	0	3	4	0.000000	0.00000	-10.000000	10.000000	0.000510
0.000000	0.00000		0.00000						
2 21	2212	0	5	0	-0.000000	0.00000	100.000000	100.004402	0.938270
0.000000	0.00000		0.000000						
3 21	11	1	0	0	0.535189	-0.903093	-9.537248	9.594848	0.000510
0.000000	0.00000		0.000000						
4 21	22	1	0	0	-0.535189	0.903093	-0.462752	0.405152	-1.073310
0.000000	0.00000		0.000000						
5 21	2212	2	0	0	-0.000000	0.000000	100.000000	100.004402	0.938270
0.00000	0.00000		0.000000						
6 21	9900220	4	0	0	-0.816422	0.988845	7.281930	8.148995	3.425677
0.000000	0.00000		0.000000						
7 21	2212	5	0	0	0.281233	-0.085752	92.255319	92.260558	0.938270
0.000000	0.00000		0.000000						
8 12	2	6	13	15	-0.829264	0.986121	0.600349	1.459258	0.330000
0.000000	0.00000		0.000000						
9 11	-2	6	13	15	0.012842	0.002724	6.681581	6.689738	0.330000
0.000000	0.00000		0.000000						
10 1	2212	7	0	0	0.281233	-0.085752	92.255319	92.260558	0.938270
0.000000	0.000000		0.000000						
11 1	11	3	0	0	0.535189	-0.903093	-9.537248	9.594848	0.000510
0.000000	0.00000		0.000000						
25 55	22	1	0	0	0 000511	0 000526	-0 003713	0 003785	0 00000
0.000000	0.000000	Ŧ	0.000000	0	0.000511	0.000520	0.005715	0.005/05	0.000000

One event in *PythiaeRHIC/RADGEN*

1 21	11	0	3	4	0.000000	0.00000	-10.000000	10.000000	0.000510
0.000000 2 21	0.000000 2212	0	0.000000	0	-0.000000	0.000000	100.000000	100.004402	0.938270
3 21	0.000000 11	1	0.000000 0	0	0.535189	-0.903093	-9.537248	9.594848	0.000510
4 21	22	1	0.000000	0	-0.535189	0.903093	-0.462752	0.405152	-1.073310
5 21	2212	2	0	0	-0.000000	0.00000	100.000000	100.004402	0.938270
0.000000 6 21 0.000000	0.000000 9900220 0.000000	4	0.000000 0 0 000000	0	-0.816422	0.988845	7.281930	But q is giv	en an e-e' – not
7 21 0.000000	2212 0.000000	5	0.000000	0	0.281233	-0.085752	92.255319	as e-e'-k. S	So, I don't know
8 12 0.000000	2 0.000000	6	13 0.000000	15	-0.829264	0.986121	0.600349	0	utput.
9 11 0.000000	-2 0.000000	6	13 0.000000	15	0.012842	0.002724	6.681581	6.689738	0.330000
10 1 a aaaaaa	2212 a agagga	7	0 9 999999	0	0.281233	-0.085752	92.255319	92.260558	0.938270
11 1 0.000000	11 0.000000	3	0 0.000000	0	0.535189	-0.903093	-9.537248	9.594848	0.000510
25 55 0.00000	22 0.000000	1	0 0.000000	0	0.000511	0.000526	-0.003713	0.003785	0.00000

See the radiated photon in the final state

Conclusions

Generators seem to work well (with some small caveats) at Born level at calculating inclusive NC cross section. Cross section analysis code is working well.

□ Radiative effects need some work in both programs.